Projections of Extreme Precipitation: Process and Overview

Mathew Barlow
Professor of Climate Science
Department of Environmental, Earth, and Atmospheric Sciences
University of Massachusetts Lowell

IPCC Lead Author
AR6 Working Group I: Physical Science Basis

Extreme Precipitation Team Leader
Boston Climate Report, 2016 & current

Mathew_Barlow@uml.edu
How do we assess the likelihood of future changes in extreme precipitation, and why should you care?
There are multiple sources and types of uncertainty in the projections.

Understanding the process allows better understanding and management of uncertainty.
Projections of Extreme Precipitation: Process

Physical Understanding + Earth System Models + Observed Changes \rightarrow \begin{align*}
\text{Understanding} & \\
\text{“Big Picture” Assessment} & \\
\text{Quantitative Projections} &
\end{align*}

Mathew_Barlow@uml.edu
Projections of Extreme Precipitation: Process

Physical Understanding + Earth System Models + Observed Changes

This Talk
Understanding
“Big Picture” Assessment
Quantitative Projections

Next Talk

Mathew_Barlow@uml.edu
Projections of Extreme Precipitation: Process

Physical Understanding
- expectations based on basic physical processes
- qualitative
 +

Earth System Models
- quantification of physical understanding
 +

Observations
- has it happened in the deep past, is it already happening now?

Agreement gives confidence

But uncertainties: future emissions, model limitations, natural variations
Projections of Extreme Precipitation: Process

Done at multiple levels:

International: Intergovernmental Panel for Climate Change (IPCC)

US: National Climate Assessment

Regional: Northeast Regional Climate Center

+ additional state and local assessments (including Boston climate report)

Physical Understanding

+ Earth System Models

+ Observed Changes

Mathew_Barlow@uml.edu
Physical Understanding 101

Warmer air
 → potential for more water in atmosphere*
 → deeper storms**

verified in models and observations

So: we can expect strongest storms to be stronger

*via the Clausius-Clapeyron equation
**A warming column of air expands, via the hypsometric equation
Physical Understanding 101

Colder Storm

Warmer Storm

Warming
Or, put more directly …
More of This: Mar 2018, Quincy

Photo: National Guard
More of this: Oct 2016, Worcester

Photo: WBZ

Mathew_Barlow@uml.edu
More of this: Jan 2018, Revere

Photo: Adam Abougalala

Mathew_Barlow@uml.edu
But also more dry spells …

Counter-intuitively, we can also expect more drought at the same time (sometimes in the same season):

- Greater variability in precipitation due to enhanced hydrologic cycle with more moisture

- Higher evaporation with higher temperatures

IPCC AR5 WGI, CH 12: “more intense downpours, leading to more floods, yet longer dry periods between rain events, leading to more drought”
General factors in favor of increase in extreme precipitation:

Physics. Based on fundamental physical principles, the upper limit on atmospheric water vapor will experience notable increases as the climate system warms. The degree to which this upper limit will be realized, and how frequently, is subject to complex regional and local factors.

Model consistency. While regional projections vary, all the individual results show increases in maximum intensity. This consistency increases confidence although it is not a guarantee of an accurate result, especially given known limitations such as those associated with hurricanes.

Historical trend. The Northeast has already exhibited notable increases in extremes. The prominence of the trend, especially in combination with the consistency in the sign of the model projections is highly suggestive of future increases, and sets a minimum level of what is physically possible.
General factors in favor of increase in extreme precipitation:

Physics. Based on fundamental physical principles, the upper limit on atmospheric water vapor will experience notable increases as the climate system warms. The degree to which this upper limit will be realized, and how frequently, is subject to complex regional and local factors.

Model consistency. While regional projections vary, all the individual results show increases in maximum intensity. This consistency increases confidence although it is not a guarantee of an accurate result, especially given known limitations such as those associated with hurricanes.

Historical trend. The Northeast has already exhibited notable increases in extremes. The prominence of the trend, especially in combination with the consistency in the sign of the model projections is highly suggestive of future increases, and sets a minimum level of what is physically possible.

Mathew_Barlow@uml.edu
Physics. Based on fundamental physical principles, the upper limit on atmospheric water vapor will experience notable increases as the climate system warms. The degree to which this upper limit will be realized, and how frequently, is subject to complex regional and local factors.

Model consistency. While regional projections vary, all the individual results show increases in maximum intensity. This consistency increases confidence although it is not a guarantee of an accurate result, especially given known limitations such as those associated with hurricanes.

Historical trend. The Northeast has already exhibited notable increases in extremes. The prominence of the trend, especially in combination with the consistency in the sign of the model projections is highly suggestive of future increases, and sets a minimum level of what is physically possible.
General factors in favor of increase in extreme precipitation:

Physics. Based on fundamental physical principles, the upper limit on atmospheric water vapor will experience notable increases as the climate system warms. The degree to which this upper limit will be realized, and how frequently, is subject to complex regional and local factors.

Model consistency. While regional projections vary, all the individual results show increases in maximum intensity. This consistency increases confidence although it is not a guarantee of an accurate result, especially given known limitations such as those associated with hurricanes.

Historical trend. The Northeast has already exhibited notable increases in extremes. The prominence of the trend, especially in combination with the consistency in the sign of the model projections is highly suggestive of future increases, and sets a minimum level of what is physically possible.

Mathew_Barlow@uml.edu
General factors that cause uncertainty:

Hurricanes. Important but not well-resolved in current models.

Naturally-occurring climate variability. On timescales of a few decades, influence of natural variability is expected to be comparable in importance to human-caused climate change at regional and local scales.

Differences among model results. Regional projections of precipitation extremes vary considerably between different models.

Changes to the jet stream. It is currently an open question as to whether global warming may be causing the jet stream to become “wavier” and support slower, stronger storms.
uncertainty factors, cont.:

Tipping points. There appear to be “tipping points” in the climate system, where rapid and irreversible change is initiated, such as the collapse of the thermohaline circulation in the Atlantic Ocean. These may result in even larger, more rapid changes and our current understanding of these events is limited.

Limited model validation. At this time, we have only limited information on how well models simulate extreme precipitation processes for the Northeast US.

Known model limitations. Many small-scale processes are important but difficult to model, such as aerosol interactions and small-scale cloud processes.

Unknown unknowns. ???
“Big Picture” Statements

Even with all the uncertainties, we can say:

(From the IPCC Fifth Assessment Report, Physical Science Basis, Chapter 12)

Globally, for short-duration precipitation events, a shift to more intense individual storms and fewer weak storms is *likely* as temperatures increase.

Over most of the mid-latitude land-masses and over wet tropical regions, extreme precipitation events will *very likely* be more intense and more frequent in a warmer world.

Next report in progress, out in 2021
Key Recent & Upcoming Reports

• Fourth National Climate Assessment (NCA4), Volume II (2018):
 Northeast Region: https://nca2018.globalchange.gov/chapter/18/ ← regional impacts and projections

• IPCC Special Report on Oceans and Cryosphere (Sep 2019) ← will be newest assessment of sea level rise

• Updated Greater Boston Climate Report (Dec 2020) ← will be newest detailed local assessment

• IPCC Working Group 1, AR6 (Apr 2021) ← will be assessment of latest climate model projections, just now becoming available

Questions?
Mathew_Barlow@uml.edu
IPCC Sixth Assessment (AR6) Reports

- Oct. 2018: Global warming of 1.5 °C
- Sept. 2019: Oceans and cryosphere
- April 2021: The Physical Science Basis
- October 2021: Climate Change Impacts, Adaptation and Vulnerability
- April 2022: The Synthesis Report

- Aug. 2019: Land
- July 2021: Mitigation of Climate Change

Mathew_Barlow@uml.edu