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Abstract

Increasing the spatial density of Northeastern United States locations for
which daily snowpack water equivalent (SWE) information is available
would be useful for flood forecasts and agricultural, urban, and recreational
water supply prediction. To that end statistical regression models were
developed using as predictors meteorological variables available at National
Co-Operative Observer Program (Co-Op) sites. The 15 National Weather
Service Offices (NWSOs) in New York and New England were the source of
28- to 35-year daily summary data sets which included SWE. These sets
were used to develop the models. Monthly NWSO models, all predicting
the square root of SWE, were created for the climatological winter months
of December, January, and February, as well as for November, March, and
April. Predictors included the square root of snow depth, the number of
consecutive days with the maximum temperature below freezing, the
snowfall during the 24 hours preceding the day of prediction, and the water
equivalent of precipitation which fell in that period. Values of R? ranged
from 43.3% to 87.5% for the winter months, with 67% of all predictions still
falling within +15% of observed when calculated for a 10 inch (25 cm) SWE.

The stations were then grouped, first monthly by geographic regions, and
then into one "Total" group encompassing all 15 NWSOs for each month.
Winter groups combining the data for the three winter months, and also a
"Total" winter group, combining all 15 NWSOs and 3 months, were
created. Models developed for these groups provided a separate intercept
term for each station (and month in the case of the "Total" winter group),

but included one parameter estimate per predictor for all sites. All of these



models also included a correction factor for rain on snow events. In the case
of the winter "Total" model, 45 monthly station models were reduced to a
single equation. This model still exhibited an R2 of 72.0%.

Independent verification studies were performed to determine the
degree to which the NWSO-derived models could predict SWE for Co-Op
stations. Periodic Co-Op snow survey data was used to determine both the
efficacy of the models as well as the NWSO model best suited for use at a
Co-Op station. Results showed that SWE at each Co-Op station was well
predicted by the models from at least one NWSO, with results at least as
good as those from developmental sites. Model-described variation ranged
from 60.0% to 81.0% for most January data, and from 54.0% to 90.0% for
most February data.

A method was developed to assist potential users in determining the
appropriate model for a given location. Predictions for stations in western
New York which receive Lake Effect snow may be made using Buffalo or
Rochester models with comparable results. Syracuse models should be used
at Central New York sites with Lake Effect snow, while Binghamton models
should be used at those sites not affected by these snows. In the mountains
and valleys of the Adirondacks and Catskills, two criteria may be used.
Caribou, ME, models should be used for prediction if a station has single
digit (°F) long-term monthly average minimum temperatures, or, if these
temperatures are double digit, the site is above 1200 feet in elevation. If
these criteria are not met, Albany models yield best results.

Further calibration studies are needed to determine if these models are
equally useful in the remainder of the Northeastern United States and

whether they have applications in adjacent Canadian provinces.
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1. Introduction

Snowmelt affects everyone in the Northeastern United States, through
its role in influencing agricultural water supplies, river flooding, reservoir
levels (see Work, 1953 for Western U. S. examples which also apply to the
Northeast), and in its most recently recognized position as purveyor of
concentrated quantities of acid material in the acid shock phenomenon
(Prévost, 1991). In contrast to large parts of the mountainous areas of
Western North America, where snowcover remains for the entire winter
season (if not semi-permanently), the snowpack in the Northeastern United
States fluctuates. This fluctuation is not only with respect to the amount of
snow on the ground, but also the duration of the snowpack, and how
frequently a snowpack even exists. When examining snowcover records
extending back to the 1950s, coastal locations such as New York City have
experienced at least 2 inches (5cm) of snowpack depth only on about 15% of
all days in January. This is in contrast to more northerly sites such as
Caribou, Maine, where a minimum 2 inch snowpack depth has occurred on
approximately 70% of all January days. Since a substantial percentage of
annual precipitation falls as snow in the Northeast, and is thus held in
storage for varying lengths of time, the importance of understanding
snowmelt is clear. To be able to predict daily snowmelt, or at least how
much water is in storage on a daily basis, would be useful in predicting
water supplies for agricultural, urban, and recreational uses. Forecasting
extreme snowmelt inputs into rivers would provide advance warning to
appropriate agencies for the protection of lives and property against

flooding.



Presently sites in the Northeast which actually measure snowmelt are
limited to a small number of research facilities, such as the United States
Army Corps of Engineers Cold Regions Research and Engineering
Laboratory in Hanover, New Hampshire. These are data-intensive
locations which monitor many meteorological variables and also use
lysimeters to measure daily meltwater. These stations are of limited use,
however, in providing snowmelt information for the entire region, simply
because of their small number.

Buttle and Xu (1988), studying a location just north of Lake Ontario,
reported a method which suggests an alternative to daily snowmelt
measurements. Snowpack water equivalent (SWE) is the depth of water per
unit area obtained when the snow over the same area is completely melted.
If SWE at a location is observed from one day to the next, negative changes
after accounting for precipitation may be attributed to snowmelt. This
simplification ignores sublimation and evaporation from the snowpack,
assuming these events to be negligible on a daily basis.

New York and New England have 15 National Weather Service Offices
(NWSOs) which measure SWE daily (see Figure 1), an immediate
improvement with respect to both station density and geographic coverage
over the research sites. However, a drawback of using stations providing
point measurements is the non-representativeness of a given station within
its surrounding area. For example, the NSWO at Albany, NY is less than
300 feet (95m) above mean sea level (msl). SWE values measured there
probably have little in common with SWE quantities in the mountains of
the Adirondacks, 1300 to 4500 feet (400 to 1400m) above the Albany station.

A site located in the Adirondacks would be more representative, but no
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NWSO exists in that area. Further increasing the number of stations used
for reporting would be a step toward alleviating the problem of non-
representative coverage. Rather than spend large sums in developing new
stations, use can be made of an additional network which is already in place.

The National Co-Operative Observer Program (Co-Op) consists of over
11,000 sites nationwide (National Cooperative Observer Newsletter, 1983), of
which approximately 250 are in New York and another 250 are in New
England (see Figure 2). Although the operators of this network do not
measure SWE, they do measure, on a daily basis, several climatological
variables which have the potential to provide physically-based estimates of
SWE. The variables reported at Co-Op stations are 24-hour maximum and
minimum temperatures, daily snow depth, and 24-hour snowfall and
precipitation. This last quantity is the liquid equivalent of actual
precipitation, be it solid, liquid, or a mixture of the two. These stations also
participate in periodic snow surveys during which SWE is also directly

measured.
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The goal of this thesis is to produce a system for predicting SWE using
variables available at Co-Op stations. Actual SWE measurements from
NWSO stations will be used to develop models. The models will then be
verified using the independent snow survey data for the Co-Op stations.
Completed models may then be utilized by those interests concerned with
SWE or snowmelt. These include

1) National Weather Service Hydrologists monitoring snowmelt flood

situations, who could estimate snowmelt from day to day using SWE
predictions.

2) Agricultural Meteorologists forecasting the component of growing
season water supplies due to SWE in watersheds.

3) Urban officials planning summer water usage policies based on
winter SWE amounts affecting storage reservoirs.

4) Building Engineers requiring snow load information for structures,
by determining snowpack mass from historical records of snow
depth and predicted SWE. This would be useful not only for design
studies, but also for the determination of real-time safety hazards.

In order to understand the relationship of observed meteorological
variables to SWE, section 2 of this thesis will examine the theory behind the
physical basis of snowmelt. This may also yield insight with regard to
extracting additional information from the available data. Following the
description of theory, section 3 on operational models describes related
efforts by other workers, highlighting different approaches, and presenting
techniques of developing proxies for the physical components of snowmelt.
A list of potential predictor variables will be created and presented there.
Section 4 on model development will describe the procedures used in

development and testing of statistical regression models. Final station- and
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month-specific models will be shown. A method for combining models,
thereby creating new models suitable for more general use, will be described.
At the end of this section these increasingly more general products will be
presented and discussed. In the model verification section, performance of
all of the models will be examined using independent Co-Op snow survey
data. Finally, the results of the entire project will be summarized, followed
by several appendices with more detailed explanations of some of the

statistical procedures used in this study.



2. The Definition and Theory of Snowmelt

The snowpack and its surroundings are interwoven in a system of
energy and mass exchange processes. The actual melting of snow is but one
permutation of the complex array of energy and mass transfers between the
snowpack, the sun, atmosphere and clouds, underlying soil, surrounding
topography and vegetation, and precipitation.

Snowmelt is defined as that water produced by the melting of snow
which actually leaves the bottom of the snowpack. This occurs only after
sufficient heat has been supplied to first raise the internal snowpack
temperature to the freezing point, and then to melt enough snow to satisfy
the free-water holding capacity of the pack. Free-water holding capacity is
that maximum amount of water which can be held within the pore space of
the snowpack by capillary action. This corresponds to a threshold snowpack
density of 40-45%, obtained by dividing SWE by the corresponding snow
depth, before water begins to drain from the snowpack base (Bertle, 1966).

The energy supplied to the snowpack comes from several sources.
Various forms of radiative transfer tend to dominate, but on a day-to-day
basis other sources can play important roles. The difference between air
temperature and the snowpack surface temperature drives an energy flux of
sensible heat (i.e.; heat flowing from a relatively warm region to a relatively
cold region). The moisture content of the overlying air, in conjunction
with snowpack surface conditions, induces either evaporation or
condensation of liquid water, or sublimation or deposition of solid water.
These phase changes are mass transfers accompanied by energy transfers, in

the form of latent heat (i.e.; energy stored as water changes phase from solid



to liquid to gas, and which is released as the reverse processes occur),
between the snowpack and the atmosphere. Although mass transfer at first
glance may seem only to be addition or removal of some phase of water
from the snowpack, it must be remembered that even new precipitation is
involved with energy transfer, the direction of which merely depends on
the relative temperature of the precipitation and the snowpack surface. An
extreme example is the heat supplied when rain falls onto the surface of the
snow.

The underlying soil represents another source or sink of energy for the
snowpack. Since the potential for evaporation of soil moisture into
snowpack air spaces is reduced by winter temperatures, especially if the soil
itself is frozen, heat exchange between the soil and snowpack is primarily
sensible.

A snowpack is not one homogeneous material, but consists of layers of
differing densities, some of which may even be ice. Heat flux into and
through the snowpack, therefore, does not occur uniformly, but with
virtually infinite variation, in the horizontal as well as the vertical
dimension. Melting of crystals at the surface does not guarantee similar
melting throughout the pack, nor does it necessarily result in uniform
liquid water percolation down through the snow. The net effect is an
extremely complex system which must be simplified if it is to be usefully
described by an operational SWE prediction model.

For most purposes in this investigation the snowpack will be viewed as a
one-layer homogeneous system. This simplification will hold for most of
the concepts presented, although some mention of the ability of solar

radiation to partially penetrate the snowpack will be made. Non-
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homogeneity will also be briefly treated when discussing the heat used to
raise the snowpack to the freezing point of water.

There are three interrelated theoretical methods of depicting snowmelt.
First, the energy balance approach describes the heat exchange between the
snowpack and its surroundings. A positive imbalance indicates a net heat
transfer to the snowpack. This excess is used to raise the snowpack
temperature and melt snow. Second, the water balance approach is a mass
conservation method which accounts for additions to and losses of SWE. A
net loss can be attributed to snowmelt after all other sources and sinks have
been considered. Third is a hybrid approach used when liquid precipitation

falls on snow. Rain both alters the water balance of the snowpack and

serves as an additional source of heat.

2.1 The Energy Balance Approach

A balance exists between the snowpack and its surroundings with respect
to energy, or heat transfer. The snowpack gains energy, or heat, in the form
of radiation from the sun, and infrared radiation from the atmosphere,
clouds, vegetation, and adjacent topographic features. Warm air over the
snowpack not only supplies heat, but also provides moisture for liquid
condensation or solid deposition onto the pack. These phase changes
supply heat to the snow. Another source of heat is underlying soil with a
temperature greater than that of the snowpack base. The snowpack loses
heat through infrared radiation, sensible heat transfer to colder overlying
air, liquid water evaporation or solid water sublimation into a dry air mass,

and loss to soil colder than the snowpack base.
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When the contribution of all of the sources and sinks are summed, what
remains is net energy transfer either toward or away from the snowpack.
Net heat gains by the snowpack are partially utilized in raising the
snowpack temperature to the freezing point. The remainder are then used
to melt snow. Net heat losses by the snowpack result in cooling of the snow
temperature, which more than offsets any heat released into the pack by the
freezing of internal free water. This entire framework represents the energy
balance of the snowpack.

Nineteenth century Russian, as cited in Kuz'min (1972), and early 20th
century German researchers, cited in Wilson (1941), first approached the
snowmelt problem quantitatively, but it was Wilson (1941) who published
the first English-language presentation of the thermodynamics of
snowmelt. The components of this theory have been incorporated into
snowpack energy balance equations by many investigators (e.g.; U. S. Army
Corps of Engineers {USACOE]}, 1956), presented here following Kuz'min
(1972) and Fleming (1975):

Wr+ W+ W+ W+ W, + W =0 (1

where all units are in Watts/m2, the rate of energy exchange per unit

surface area, and

Wy =radiative heat transfer between the snowpack and the sun,

atmosphere, and opaque or solid objects
W, =sensible heat transfer between the snowpack and the atmosphere

W, =latent heat transfer between the snowpack and the atmosphere

W, =soil heat exchange with the snowpack

W, =heat transfer which changes snow temperature

W, = heat expenditure to melt snow, or the heat gain caused by
freezing liquid water in the snowpack



12

Positive values for the first four terms represent transfers toward the
snowpack. If Wy, is brought over to the right hand side of the equation, the
sum of the left hand side, if positive, indicates heat available for melting,
while a negative sum indicates freezing of liquid water.

It is useful to examine each of the components in greater detail.
2.1.1 Radiative Transfer

The radiation term consists of both shortwave or solar radiation (the
wavelength range 0.15 - 3.0 um, consisting of ultraviolet, visible, and "near"
infrared), and longwave or terrestrial radiation (in the "far" infrared
wavelength range 3.0 - 100um). The 3.0 pm cutoff is the wavelength where
Planck's electromagnetic emission curves for the sun and earth intersect.
Short- and longwave radiation are further divided into incoming and
outgoing components with respect to the upper surface of the snowpack.

Net radiation is described by the following relationship:

Wr=Sd+ST+LL+LT )

where the arrows denote incoming (down, toward the snowpack) and
outgoing (up, away from the snowpack) components of solar or shortwave
(S) and longwave (L) radiation.

2.1.1.1 Shortwave Radiation

Incoming shortwave is composed of both direct and indirect, or diffuse,
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radiation. The amount of direct beam energy is dependent upon angle of
incidence and cloud cover, and, if observed over 24 hours, daylength. The
indirect portion is a result of scattering by atmospheric gasses, particulates,
clouds, and multiple reflections between clouds and the snowcover. Since
snow is somewhat transparent to shortwave radiation, the amount of solar
radiation affecting the energy budget of the snowpack is divided between
that contacting the surface only, and that entering and penetrating to a
depth. Assuming a homogeneous snowpack and ignoring internal
reflections, the penetrating component behaves according to Beer's Law
(Oke, 1978). The amount reaching a level beneath the surface decreases

exponentially according to:

S, =5

z surface

e—az (3)

where radiation terms are in W/ m2 and

Seurface = incoming solar radiation incident upon the snowpack surface

S, = incoming solar radiation reaching depth z (cm) in the
snowpack

e = base of natural logarithms

a = extinction coefficient (0.07 to 1.5 cm™], depending on snow

conditions {Baker, et al., 1991})

Baker, et al. (1991), summarizing earlier work on extinction coefficients
affecting solar radiation passing through snow, calculated penetration
depths ranging from 5 to 99 cm. These levels are where the radiation has
been reduced to 0.1% of the radiation striking the snowpack surface. It
follows that beneath shallow snowcovers the solar radiation which actually
passes through to the underlying surface should not be included in the

radiation affecting the pack, but will affect the soil transfer term.
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Outgoing shortwave radiation is that portion of the incoming shortwave
reflected by the snow surface, along with internal snowpack reflections, and
is characterized by the albedo of the snowpack. The albedo varies with the
age and depth of a snowpack with values ranging between 0.2 and 0.8.
Clean, fresh snow is much more reflective than older snow containing dirt.
Albedo is also affected by the underlying surface when snow depths are less
than about 5 cm over bare soil, 7.5 ecm over sod, and 15 cm over alfalfa
(Baker, et al.,1991). These investigators reported lower albedos in snowpacks
more shallow than these depths.

Net shortwave radiation may be described as follows (Kuz'min,1972):

S=ST+S~L=(SD+Sdif)*(l—r)—Sh (4)

where radiation is in W/ m2 and

S =net shortwave radiation
Sp =direct beam radiation

Sqif =diffuse radiation

r =albedo (dimensionless)
S, =shortwave radiation which reaches the sub-snow surface

2.1.1.2 Longwave Radiation

Longwave radiation from a solid is determined by its surface
temperature and emissivity, or how efficiently the surface emits radiation.
For air, increased moisture and particulate contents are associated with
higher emissivities (Oke, 1978). Incoming longwave radiation (L ) from the
atmosphere is a function primarily of the characteristics of the planetary

boundary layer (PBL), the lowest 1 km of the atmosphere. Since the PBL,
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like the snowpack itself, is not homogeneous, each layer with its own
temperature, moisture, and particulate content has a unique long-wave
emissivity. Although the longwave radiation striking the snowpack surface
is a composite function of the various temperatures and emissivities of the
layers within the PBL, for simplicity the mean temperature and emissivity
of the bulk PBL may be used as the controlling factors (Oke, 1978). Beneath
vegetation, the temperature and emissivity of the closed canopy replace
those of the PBL in determining incoming longwave radiation.

The rate of longwave energy emission per unit surface area is described

by the Stefan-Boltzman Law:

L=¢oT? (5)

where

L =longwave energy flux (W/m?2)
€ =longwave emissivity of the radiation source (dimensionless)

o =Stefan-Boltzman constant (5.67 x 10-8 J/ m2K4s1)
T =appropriate source temperature in degrees Kelvin

Outgoing longwave radiation is a function of snowpack surface
temperature and an emissivity of nearly one. Clear nights are characterized
by unsaturated layers (with respect to water vapor) throughout the
atmosphere, with relatively low emissivities. Since these layers also tend to
cool with height, and are typically colder than the snowpack surface, net
longwave radiation is negative, or outgoing on clear nights. Conversely,
since cloudy layers have higher emissivities than dry layers, net longwave

radiation approaches zero and may actually be positive on overcast nights,
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because clouds will absorb terrestrial radiation and reradiate back to the
snowpack. Net positive longwave radiation is only the case if cloud base
temperatures are warmer than snowpack temperatures (Oke,1978).
During the day, while incoming longwave changes little from that
occurring at night, the outgoing longwave may be higher simply because of

higher surface temperatures (Oke,1978). This assumes that the temperature

of the snow surface fluctuates diurnally.
2.1.2 Turbulent Transfer

Sensible heat exchange (W) in equation 1) between the snowpack surface
and the atmosphere occurs when warm or cold air relative to the snowpack
surface lies over or moves past the snowpack. Latent heat exchange (Wg in
equation 1) accompanies vertical mass transfer of water by phase change at
the snowpack surface. The direction of mass transfer depends on the
moisture content, or dewpoint, of the air over the snow, as well as the
dewpoint temperature (the temperature to which air at constant pressure
must be cooled in order to saturate the air with respect to liquid water) of
the snow surface. It is reasonable to assume that the air adjacent to the
snowpack surface is probably saturated.

Sensible and latent heat exchange between the surface of the snowpack
and overlying atmospheric layers are similar in both their physical basis and

mathematical formulations. In both cases there are two regions of transfer:
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1) The laminar boundary layer, where heat and mass exchange is by
molecular diffusion in effectively still air.

2) The atmospheric boundary layer, where energy and mass exchange
occur by turbulent transfer.

Although conceptually different, these regions are virtually impossible

to decouple because of the indistinct transition between layers.
2.1.2.1 Sensible heat transfer

When warm air, relative to the snowpack surface, is above the
snowpack, sensible heat transfer is positive (toward the pack), while cold
overlying air results in a negative sensible heat flux (away from the pack).
As described earlier, heat will flow from warmer regions to colder regions.
Within the laminar boundary layer heat transfer is a molecular diffusion
process driven by the temperature gradient across the layer. This can be

represented mathematically as:

WK = pCthdae/aZ (6)

where

p = air density within the laminar layer (kg/ m3)
¢, = specific heat of air at constant pressure (1010 J kgl °cl
k4 = molecular diffusion coefficient for sensible heat

(=0.19x 104 m2/s71 at 0°C)
08/9z = vertical potential temperature gradient in the laminar layer (°C/m)

The laminar layer temperature gradient is maintained by the mixing action

of wind and turbulence in the atmospheric boundary layer, which supplies



18

large quantities of warm or cold air to the top of the laminar layer. These
serve respectively as energy sources and sinks. Since molecular diffusion is
a very slow, thermal gradient-dependent process, the large gradient which
may be assured by the presence of sources or sinks can compensate for the
inhibiting effect of slow molecular diffusion.

Turbulent transfer is summarized after Male & Granger (1981) and
Olyphant & Isard (1988) in two ways. The first is a generalized approach
which simply views turbulent transfer as diffusion on a much larger scale
than molecular, and includes the effect of vertical motions within the eddy
diffusivity, or turbulent transfer coefficient. This factor describes how
effectively the turbulence is able to transmit energy. Essentially, vigorous
turbulence moving energy down a temperature gradient is more effective
than are calm conditions. The formulation is therefore identical to
molecular diffusion through the laminar layer (equation 6), with the

exception of the coefficient:

Wy = pcpky,08/0z _ 7)

where
k,, = eddy diffusivity or turbulent transfer coefficient

of sensible heat (m?2 s-1)

The other method, eddy correlation, involves sampling of the vertical
wind and temperature fluctuations, and thereby directly observing

turbulence. It is described as follows:
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Wy =-pc 8w’ @®)

where

8'=the difference between the instantaneous potential temperature at a
level within the atmospheric layer and the mean potential
temperature of that level over time (°C)

w'=the difference between the mean vertical wind speed and the
instantaneous vertical component, with positive values for upward
vertical wind (m/s)

The overbarred quantity is the mean product of the two fluctuations, and
indicates the covariance of temperature and vertical velocity.

For example, if net positive anomalies in layer temperature tend to occur
(6' > 0) when vertical wind anomalies are negative, or downward (w' < 0),
the mean value of the product of these two terms will be negative. The
requirement for mass to be conserved dictates that simultaneously cold air
(6' < 0) must also be transporting away from the surface (w' > 0), also
resulting in a negative product of the two terms. In other words, the
tendency is for warm air to be transported on a net basis to the snowpack
surface. The sign of W, is therefore positive, indicating a sensible heat flux
toward the snowpack (Oke,1978). More generally, a positive flux (W,>0)
indicates stable stratification in the atmosphere, possibly characterized by an
actual temperature increase with height, but at least a temperature profile
non-conducive to convection. A negative flux (W, <0) indicates an
unstable lapse rate, where potential temperature decreases with height, and
convection will tend to move heat away from the snowpack. Because of the
tendency for the snowpack to cool and stabilize the air immediately above

the surface, negative flux probably only occurs when an extremely cold air
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mass settles over the area.
Sensible heat exchange not involving atmosphere-snowpack

interactions occurs when rain falls on snow. This will be discussed in

section 2.3.
2.1.2.2 Latent heat transfer (excluding rain on snow)

The vertical water vapor distribution within the atmosphere, in
conjunction with the temperature and character of the snowpack surface,
determines what phase change of water will occur at the top of the
snowpack. If the surface is dry, water vapor may deposit as a solid
(deposition) with a release of heat, or snow crystals may change from solid
to gas (sublimation) and remove energy from the snowpack in the process.
If a thin layer of liquid water exists on the upper snowpack surface, either
condensation of water vapor may occur onto that layer with a release of
energy, or water may evaporate from the layer, removing heat. If the
moisture gradient points away from the surface (i.e.; lower concentrations at
the snowpack), condensation or deposition will occur. Conversely, dry air
over the snow surface will support evaporation or sublimation.

Latent heat transport through the laminar boundary layer is a molecular
diffusion process driven by the water vapor gradient. This is summarized
as follows using evaporation or condensation as the phase change causing

the energy transfer (after Oke,1978):
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W, =pLykeq0q/0z 9)
where
= air density (kg/ m3)
L, = latent heat of vaporization (2.5 x 1007 kg'1 at 0° C)

K.4 = molecular diffusivity for water vapor (= 0.21 x 104 m2/s-1at 0°C)
oq/az = vertical specific humidity gradient in the laminar layer ({kg
water/kg air} m™1)

Wind and turbulence supply moist or dry air to the top of the laminar
boundary layer, providing the moisture source or sink. In a manner
analogous to thermal diffusion of sensible heat, slow molecular diffusion of
water vapor combined with the presence of moisture sources or sinks can
cause the development of large specific humidity gradients across the
laminar layer. These, in turn, then overcome the inhibiting effect of slow
molecular diffusion.

Turbulent transfer of latent heat is summarized by Granger & Male
(1981) and Olyphant & Isard (1988) using two approaches essentially
identical to those which describe turbulent transfer of sensible heat.
Equation (10) treats turbulent latent heat flux as large-scale diffusion, with
the role of the vertical motions incorporated into the eddy diffusivity of
latent heat. This term is the only difference between this equation and the

laminar boundary layer latent heat diffusion formula (see equation 9).



W, = pL,kedq/0z (10)

where

k., = eddy diffusivity, or turbulent transfer coefficient of latent heat

(m2/s)

The other method, eddy correlation, involves sampling of the vertical
wind and specific humidity fluctuations to directly measure turbulence, and

is described in equation (11):

We=—-pL,q'W (11)
where
q' = the difference between the instantaneous specific humidity of a

level within the atmospheric boundary layer and the mean specific
humidity of that level over time
w' = the difference between the mean vertical wind speed and the
instantaneous vertical component at the level
The overbarred quantity is the mean product of the two fluctuations over
time, and indicates the covariance between specific humidity and vertical
velocity.
As an example, if net positive anomalies in boundary layer specific
humidity (q' > 0) occur and the net vertical motion anomalies are negative
(w' < 0), or downward, the mean value of the product of these terms is

negative. Conservation of mass restrictions require negative specific
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moisture anomalies (q' < 0) to be simultaneously transporting away from
the surface (w' > 0). In other words, the tendency is for moist air to be
transported on a net basis to the snowpack surface. The sign of W is
therefore positive, indicating a latent heat flux toward the snowpack.

More generally, the amount of heat transported depends on which phase
change takes place at the snow surface. If there is a thin layer of liquid water
surrounding snow flakes or crystals, condensation or evaporation will
occur. This characterizes a snowpack with a surface temperature near
freezing. If the snowpack is colder, sublimation or deposition will occur and
the latent heat of fusion (L; = 2.8 x 1003/ kg) would replace the latent heat of
vaporization in the heat transfer relationships. Deposition and sublimation
will cause larger energy transfers than condensation and evaporation.

Latent heat exchange which does not involve snowpack-atmosphere
interactions occurs when rain falls on snow. This will be treated separately

in section 2.3.
2.1.3 Soil heat transfer

When the soil temperature gradient points away from the soil surface
there is a positive heat transfer to the snowpack. Conversely, a gradient
toward the surface will remove heat from the snowpack. Kuz'min (1972)
formulated this process of molecular conduction in the soil layer beneath

the snowpack:
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W, =-A3T/dz (12)

where

A= thermal conductivity of the soil (W m™! °k1
z = depth, with increasingly negative values away from the surface
oT/oz= vertical temperature gradient of the soil layer beneath the
snowpack (°K/m)
The vertical temperature gradient of the soil may be influenced by solar

radiation penetrating the snow cover and warming the soil surface, which

can strongly affect the temperature gradient near the surface.

2.1.4 Excess Heat in the Snowpack

When the above terms in the energy balance equation are summed and
the result is positive, excess heat has been transferred to the snowpack. If
the snowpack temperature is less than O° C, some, or all of this heat is used
to bring the snowpack towards the freezing point. Any positive imbalance
which then still exists is used to melt snow. This is certainly the case in
shallow snowpacks and is a sufficient explanation for this investigation.
Deeper snowpacks may have colder layers which are not warmed until
water from melted crystals in higher layers percolates down.

The energy flux density, in MJoules/ m2/ day, needed to melt an amount

of snow depends on B, the thermal quality of the snow (USACOE,1956):

g - heat required to produce a unit liquid volume from snow (13)
heat required to produce a unit liquid volume from ice at 0° C
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Since snow contains air spaces and may already contain free liquid water,
less heat is required to produce a given volume of liquid water than is
required by solid ice. Therefore, B is a function of snow density and liquid
content compared with the density of ice, and will be less than 1 except
when the snowpack is very cold and needs substantial warming before it
reaches the freezing point. The excess heat supplied to the snowpack is then
used to melt snow at the following rate (USACOE,1956):

M =B * (H,, / 3.35) (14)

where each kilogram per square meter of water corresponds to a liquid

depth of 1 millimeter and

M = meltwater in mm
B= thermal quality of snow, a dimensionless ratio

H, = excess heat supplied to snowpack (MJoules/ m2)

3.35= the latent heat of fusion, or the number of MJoules/kg required
to produce one mm of water from ice (USACOE,1956)

Snowmelt as defined by melted snow leaving the base of the snowpack
will not occur until this melting has provided sufficient liquid to satisfy the
free-water holding capacity of the snowpack. Only after this content has
been reached will additional heat result in water leaving the base of the pack
as snowmelt.

Table 1 shows the variables which need to be measured for a complete

treatment of the snowpack energy balance.
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Table 1. Variables required for the energy balance approach to snowmelt.
Letters correspond to the terms which use the variable: R = radiation, H =
sensible, E= latent, S = soil, I = warming snowpack.

Variable Term

Incoming solar radiation
Albedo
Temperatures
Snow surface
Vegetative canopy
Cloud base
Air- at surface
- through the planetary boundary layer
Soil- top
- subsurface
Snowpack - mean
Air density
Water vapor- surface
- through the planetary boundary layer E, R

A A

=
o
tr

4 4

MI=®ornsR
bt b

2.2 The Water Balance Approach

The second method of determining snowmelt is simply a mass
conservation approach. The change in daily SWE equals the sum of inputs
into the system (SWE of new snowfall, rainfall, condensation, and
deposition) less the sum of outputs (melt, sublimation from the pack,
evaporation of water in the pack) and is described by the following equation

for any selected time period (after Kuz'min,1972):



27

SWE; - SWE; = (Snfl + R + Con + Dep) - (M + Sub + Evap) (15)

where all values are in mm,cm, or inches of liquid water, and
SWE = initial and final snowpack water equivalents
Snfl = SWE of fresh snowfall
R rainfall
Con = condensation onto a surface layer of water on the snowpack
Dep = deposition onto a cold, dry snowpack
M = snowmelt, the meltwater leaving the base of the snowpack
Sub = sublimation from the snowpack
Evap = evaporation of free water from the snowpack

The water balance components are regularly measured quantities except for
those involving phase changes. Empirical results from the snowmelt
literature, presented in section 3, lend support to the assumption that
evaporation, condensation, sublimation, and deposition may be assumed to

be negligible on a daily basis.

2.3 Rain on Snow

The amount of heat in rainwater depends on its temperature. Heat

available for altering the snowpack is described as follows (USACOE,1956):

Hp=(T,—T) * P * cpw (16)
where

Hp = heat from rainfall in Joules/ m?2

T, = temperature of the rain in °C

Tg = temperature of the snow surface in °C

P, = rainfall in m

specific heat of water (4.19 x 106 Joules/°C)/m3
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When rain falls on snow several processes take place which change
SWE. The effects range from primarily just an increase in SWE if the rain
freezes on contact with the snowpack, to a large energy input in the form of
sensible heat if the rain is much warmer than the snow. In the latter case
rain will initially melt the surface layer and then flow down into the
snowpack. As it cools the liquid loses sensible heat to the snowpack, and the
process of melting involves latent heat exchange. This may be reversed if
the water refreezes, releasing the latent heat of fusion into the surrounding
snow. Additional rain allows liquid to continue moving through the
snowpack. This begins to raise the snowpack temperature to 0°C, causing
first a change in the shape of snow crystals, and then melt. Snow crystal
changes result in a compaction of the snowpack, and melted crystals further
reduce the depth of the snowpack (Bertle,1966). As the depth of the pack
decreases, the freshly melted water and any free water formerly in the
surface layer of the snowpack are released into lower layers of the pack.
Unless the remaining snowpack is already at the free-water capacity, this
released water will not leave the pack. The density of a snowpack which has
received rainfall will, therefore, be greater than a pack of the same depth

which never received liquid precipitation.



3. Survey of Operational Snowmelt Prediction Models

The following review must be prefaced by noting that snowmelt
researchers have developed either general use models (e.g.; USACOE (1956},
Anderson {1973}), or models specifically calibrated for an area or even a
point site. Few details of predictor selection or statistics are supplied in
publications. Apparently, what was important to the authors was simply
the fact that their model worked.

Morris (1985) classified snowmelt prediction models into three
categories. First, the lumped or conceptual models treat the snowpack as a
homogeneous mass and combine theoretical concepts into various indices.
Degree-day models are examples from this group. Second are what Morris
called regression models. These also treat the snowpack as a slab, but
include terms specifically describing the physics of snowmelt. The USACOE
(1956) generalized equations are examples of this type, after regression has
been performed to estimate the appropriate coefficients for each term.
Finally, distributed models also include details of the processes within the
snowpack. Anderson's (1976) model is an example.

Early attempts at predicting snowmelt relied heavily on the degree-day
approach. Put simply, melt would only be predicted to occur if the mean or
maximum temperature exceeded the freezing point of water. The melt rate
was proportional to how far the appropriate temperature was above
freezing, with a correction factor sometimes included in the form of an
intercept. Empirical analysis was performed to obtain the melt factor
coefficient, which would be multiplied by the number of degrees above

freezing for a particular day (i.e.; degree-days) and then added to the constant

29
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to yield daily snowmelt. Degree-days would equal zero if the observed
temperature used in calculation fell below freezing. The resulting formula
made intuitive sense, since daily melt would be greater for warmer

temperatures. The limitations were also clear, for

- every site could possibly have a different melt factor,

- daily melt would reduce either to zero or to a non-zero constant if the
temperature never rose above freezing, a problem if the appropriate
temperature, measured at a height of 1.5 meters, was colder than the
air closer to the snowpack surface,

- even using freezing as a base temperature was not necessarily
statistically best for every location.

The use of average daily temperature would also conceal diurnal variations,
especially in those regions experiencing large daily temperature ranges.
Table 2 shows a sampling of degree-day models and the locations for which
they were developed. Note that despite the lack of physical sophistication,
degree-day models are still being developed because of their simplicity and
minimal data requirements. The inconsistency of presentation is also
evident in that most of these models do not supply a constant for days too

cold for degree-days to be calculated.
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Recognizing that snowcover remained intact for varying periods,

Pysklywec et al. (1968) incorporated weighted degree-day information from

previous days in order to include the changing character of the snowpack:

SM,, = bl0.6(T, = C)* + 0.3(Tp_; - O +0.1(T,_, - C)'] 17)

where (X)7 is equal to x if X is non-negative and 0 otherwise, and

SM_ = daily snowmelt on day n (inches/day)

base temperature (°F)
constant
T, = mean air temperature on day n (°F)

o N=
I

mean air temperature on day n-1 (°F)

—
)
r

|

= mean air temperature on day n-2 (°F)

Their results were said to have shown little difference from the simple
degree-day form they developed, shown in table 2.

In 1941 Wilson published a treatise on the thermodynamics of
snowmelt, which served as the apparent beginning of a physically based
approach. Utilizing the thermodynamic snowmelt theory the Army Corps
of Engineers produced generalized models in 1956 with statistical
regression-derived coefficients. Western U.S. study sites were established at
which most of the variables required by Wilson's theoretical description
were measured. These included multi-level observations of atmospheric
temperatures, moisture content, and winds, soil temperatures at different
depths, and solar radiation. Initially each term in equation 1 was statistically
modeled separately, yielding snowmelt by component. For example, melt

due to incoming shortwave radiation on a flat, horizontal surface would be
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a function of the incoming solar radiation, reduced by the albedo and angle
of incidence of the solar beam. In practice, incoming solar radiation was a
measured quantity, already accounting for angle of incidence. Melt due to
this energy source was then only dependent on the albedo of the snow
surface, since melt was considered to be confined to the upper surface of the
snowpack.

In a similar manner the other terms were transformed from theory to
operationally useful forms, or actually omitted because of comparative
physical or statistical non-significance. An example of an open site
regression model suitable for forest-free areas, created by combining the
USACOE (1956) operational terms of the snowmelt energy balance model

was presented by Pysklywec, et al. (1968):

m = 0.00508 (1-0) R, + 0.029 N (T.~32) + [0.0212 (T-32)" - 0.84] (1-N) +
0.00629 (Z,Z,) /6 [(T—=32) p/py + 8.59 (e, — 6.11)] V

where (X)* is equal to x if X is non-negative and 0 otherwise, 32 refers to the

snowpack surface temperature in °F, and

m = daily melt in inches
a= albedo (dimensionless)

R, = solar radiation (Langleys/day)
= estimated cloud cover fraction
T, = cloud base temperature (°F)
T = mean air temperature in the PBL at height Z, (°F)
Z, = height of wind measurement in the PBL (in feet)
Z, = actual height of the surface wind measurement (in feet)
p = station pressure (mb)
P, = pressure corrected to sea level (mb)

e, = vapor pressure (mb)
V = wind velocity at surface height Z;, (miles per hour)

(18)
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The model accounts for net solar radiation in term 1, net longwave
radiation under cloudy skies in term 2 and under clear to partly cloudy
conditions in both terms 2 and 3, and sensible and latent heat transfer in
term 4. The last term also includes a correction for air density, which makes
the model useful at different elevations.

Recognizing the likelihood of stations not having a full complement of
data, the USACOE developed proxy variables to use when specific energy
balance components were not available. Proxies are variables which are
physically and statistically related to component variables too difficult or
expensive to measure. When combined with their regression coefficients,
proxies represent an indirect method of approximating physically important
components in the snowmelt model for which actual observations are
impractical. For example, incoming solar radiation may be described by the
duration of sunshine in minutes, or even by the maximum daily air

temperature. These and others are listed in Table 3.

Table 3 : Proxy variables developed by the USACOE (1956).

Proxy Component
Shortwave absorbed by snow net shortwave

shortwave + longwave
= allwave radiation
Longwave radiation loss in open net longwave

Daily maximum temperature sensible and longwave heat transfer
(Tmax)
Tmax X 12 hour wind run sensible and longwave heat transfer

Dewpoint X 12 hour wind run latent heat transfer

Vapor pressure latent heat transfer



35

When statistical regression models for predicting snowmelt are
developed, the coefficient of multiple correlation (R2) describes the fraction
of model-described variation of daily snowmelt. The R2 values for models
using these proxies are shown in Table 4 for open sites most similar to the
NWSOs used in this project. The predominant importance of allwave

radiation is clear.

Table 4 : Resulting R2 of models incorporating proxies from Table 3
(USACOE,1956).

Model with proxies for: R2 Time period
allwave, sensible, latent 0.97 hourly
sensible and latent 0.46 hourly
allwave 0.94 daily
shortwave 0.65 daily
sensible, latent by Tmax alone 0.23 daily

Tmean (mean temperature) alone  0.08 daily

Since the USACOE's efforts, much work has focused on specific
components of the energy balance. Pysklywec, et al. (1968), working in New
Brunswick, Canada with limited data, developed their own proxies for some
of the terms in the USACOE model. This model represents a blend of
lumped, conceptual models and regression models, as described by Morris

(1985). Their simplified model which includes these proxies is as follows:
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m = 0.615 + 0.0373 SOL + 0.0067R_ + 0.00201V(T-36)" + 0.0437V(RH) +
0.007Pr(T-32)" (19)
where R, =1440(0.7570T* - 0.459) (1 -KN)

where (X)* is equal to x if X is non-negative and 0 otherwise, melt(m) is in
inches and
SOL = duration of sunshine (hours/day)
R, = estimate of net longwave radiation (langleys/day) (USACOE,1956)
V = daily average wind velocity (miles/hour)
T = mean air temperature (°F, but °K in the net longwave equation)
RH = relative humidity (fraction)
Pr = rainfall (inches/day)
K = cloud quality factor based on type of cloud (fraction)
N = amount of cloud cover in tenths

6 = Stefan-Boltzmann's constant (8.26 x 10"11 langleys/min/ K4

SOL, V(T-36), and V(RH) were proxies for incoming short wave, sensible
heat transfer, and latent heat transfer respectively.

The point, or individual site, energy and mass balance model of
Anderson (1976) is a distributed model according to the Morris (1985)
scheme. It adds further information by not only including the
thermodynamics of snowmelt, but also some of the physical processes
occurring within the pack. This adds more complexity than the other
models, which are primarily concerned with changes at the snowpack
surface. Anderson's model, besides using moisture, temperature, wind, and
precipitation, includes information about changes in snowpack density, as
well as a term for rain on snow events. In a balsam fir forest in Quebec,
Canada, this model described 86% of the variation in daily snowmelt
(Prévost, et al., 1991). Despite the added complexity of the energy and mass

balance model, these investigators achieved marginally better results for the
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same data (R2= 0.88) with the much simpler temperature index model

SNOW-17 by Anderson (1973). This used the following formula for rain on

snow events, and a degree-day method (see equation 21) for other days.

m=[6.1x10"") (Ta +273.16)*1 - 3.4 + [(2.1 x 10~ ) PxTa] + (20)
{14 f(u,) [(e, - 6.11) + (9.5 x 10™°) PaTal}

where hourly snowmelt in mm is predicted by
T, = air temperature (°C)
P_ = rainfall (mm)
f(u,) = "empirical wind function" (m/s)
e, = vapor pressure of the air (mb)
P, = seasonal average air pressure (mb)

Here the first term treats incoming longwave radiation, 3.4 mm/hr is the
reduction in melt caused by outgoing longwave radiation, the third term is
heat input to the snowpack from rain falling on snow, and the final
bracketed term represents turbulent transfer of latent and sensible heat.

With no liquid precipitation the model is replaced by the following:
M = Mf (T, - 0°C)*+ (21)

where (X)* is equal to x if X is non-negative and 0 otherwise, and

M = snowmelt (mm)
Mf = sinusoidal melt factor to allow for seasonal increase in solar
radiation (mm/°C)
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Several other researchers have reported results for operational
prediction models with varying degrees of detail. They are summarized
here.

In Arizona research, Ffolliott et al. (1989) mention that solar radiation
can be estimated from cloud cover characteristics, and that it is used along
with maximum and minimum temperatures and precipitation in a
snowmelt model designed for what they referred to as shallow snowpacks.

Zuzel and Cox (1975) recognized the variety of possible variables
available to researchers and performed principal component analysis and
regression analysis to determine the best predictors. For an 11 day period in
May they determined that vapor pressure, net radiation, and wind were
sufficient to describe over 78% of the variation in daily melt at a high
altitude site in Idaho. The best solitary predictor was mean temperature,
which accounted for 49% of the variation in snowmelt. This is in marked
contrast with the result of 8% reported by the USACOE (1956) in Table 4 for
similar high altitude locations in California and Oregon, utilizing several
full snow seasons of data.

Olyphant and Isard (1988) used vertical profiles of temperature, relative
humidity, and wind to study the advection of sensible and latent heat and
its role in alpine (Colorado) snowmelt, and found advected heat to be very
important in late-lying (into summer) snowpacks. The amount of advected
heat fell off 5-fold 1 km from the edge of a snowfield. The authors
concluded that this heat source may actually exceed solar radiation late in
the snow season in windy alpine environments.

Most recently MacLean (1991) showed that ground heat transfer in the

winter was not sufficient to cause melt on a day to day basis at a site in
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Quebec, but said nothing about this component in autumn or spring.

Male and Granger (1981) summarized the evaporation measurements in
a semi-desert open area of the Soviet Union, and for an open area,
presumably in the Western U. S. Both showed daily evaporation from the
snowpack in January of less than 0.2 mm. This increased as the months
progressed to an April value of 0.6 to 1.0 mm per day. Reference is also
made to a reported 1.6 mm/day evaporation loss in Sweden under cold, dry
Arctic air, and as much as 0.95 mm/d condensation onto the snowpack
under warm, moist maritime air.

Finally, Bertle (1966), in the Sierra Nevada of California, among others
described in detail the effect of rain on snow, which required knowledge of
snowpack densities before the onset of rain. This was necessary to
determine how close the pack was to its free water holding capacity.

Efforts toward spatially widespread methods of snowmelt prediction
have been made throughout the research history. Most of the early work
emphasized point calculations, which gradually were incorporated into
basin-wide systems (e.g.; Anderson, 1973, Fleming, 1975). This first
involved weighting point measurements according to their location within
different areas of snowcover. Later, empirical information concerning the
relative rates of snowcover depletion was also included. Recently satellite
based remote sensing of entire regions has begun to come into favor, in
determining areal snowcover (Dozier, 1987), as has airplane based SWE
detection through the measurement of terrestrial gamma radiation
attenuation. This latter technique measures terrestrial gamma radiation
emitted from snow-free terrain, and the reduction from the same area when
covered by snow. The difference is due to attenuation by the SWE within

the snowpack (Carroll & Carroll,1989).
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Judging by the limited number and type of meteorological variables
available from Co-Op stations for statistical regression model development,
this thesis appears to return to a simpler era in snowmelt research. Since
fiscal limitations make it impossible for detailed measurements, common at
research sites, to be instituted at Co-Op stations, the trade-off of physical
sophistication for wider spatial coverage is probably worthwhile. This could
be checked empirically by using data from highly instumented sites as input
to both physically rigorous models and to those developed in this thesis,
and comparing results.

By examining more recent ground-based efforts this project has been
assisted by the understanding obtained since degree-day models were first
applied to the problem. With this background model development could
begin by drawing on these investigations to build a list of potential

predictors.



4. Model Development

Developing models using NWSO data which could then predict SWE at
Co-Op stations was a three step process. First, NWSO datasets were error-
checked and manipulated to create potential predictors. Second, rigorous
exploratory model development techniques were employed on the data set
from one NWSO. Finally, the results of exploratory model building were
extended to the remaining NWSOs, and further methods for simplifying
the final station models into more general-use forms were utilized. The
following sections detail the entire developmental process, examine the
products as they compare with more traditional degree-day methods, and
present a set of models designed for widespread applicability in SWE

prediction.

4.1 Data Preparation

National Weather Service Offices have included SWE in their daily
climate data summaries since the early 1950s. Maximum and minimum air
temperatures, snowfall, and precipitation are reported for the midnight to
midnight period. The depth of the snowpack is measured every morning at
7:00 a. m. E.S.T. (12:00 UTC), and reported as an integer if greater than two
inches. SWE is measured at 1:00 p. m. E.S.T. (18:00 UTC). Temperatures are
reported in degrees Fahrenheit, snowfall to the tenth of an inch, while
precipitation and SWE are measured to the hundredth of an inch.

The National Climatic Data Center in Asheville, NC, makes available

data tapes consisting of National Weather Service Office daily climatological
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summaries. The data used for this investigation were subsets of the records
for the 15 NSWOs in New York and New England (see Figure 1), created
and supplied by the Northeast Regional Climate Center at Cornell
University in Ithaca, NY. Table 5 describes the length of record used in this
study for each NWSO. For each station the period of record ran from the
beginning of SWE measurements in the 1950's through 1986. With the

exception of Worcester, MA, all records were for at least 30 years.

Table 5. National Weather Service Offices, their station identifiers, and
length of record used for this work.

NWSO Identifier Length of Dataset
Albany, NY ALB 1952-1986
Binghamton, NY BGM 1952-1986
Boston, MA BOS 1953-1986
Bridgeport, CT BDR 1952-1986
Buffalo, NY BUF 1952-1986
Burlington, VT BTV 1952-1986
Caribou, ME CAR 1952-1986
Concord, NH CON 1952-1986
Hartford, CT BDL 1954-1986
LaGuardia - NYC, NY LGA 1952-1986
Portland, ME PWM 1953-1986
Providence, RI PVD 1953-1986
Rochester, NY ROC 1953-1986
Syracuse, NY SYR 1952-1986
Worcester, MA WOR 1959-1986

The purpose of the developmental portion of this work was to predict
the amount of SWE at NWSOs using only predictor variables available at
Co-Op stations. Since the prediction of SWE was to coincide with the actual

time of SWE measurement, it was important not to consider any predictors
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whose daily values could be affected by events occurring after the afternoon
SWE measurement. For example, the maximum temperature for a given
day probably occurs after the SWE measurement. The preceding day's
maximum temperature was, therefore, included with the initial predictors,
but not the maximum for the current day. Figure 3 shows the timing of

observations at NWSOs of the variables also measured at Co-Op stations.

Previous Day Prediction Day

<—Oldsnfl, Oldppt —>
Snowdepth

Max Min \l/ SWE
Y

12 a.m. 7am. lpm. 12am. 7am. 1lpm. 12 a.m.

Figure 3. NWSO timing of variables. Refer to Table 6 for explanation of
variable abbreviations.

A potential source of error exists in the relationship between daily
snowdepth and SWE because of the 6-hour period between their respective
measurements. Neither snowmelt nor additional snowfall or rainfall
during this period would be a measured quantity with respect to these
datasets. For example, a mid-morning snowfall could create a large SWE,
but the already observed snow depth for the same day could be much
smaller than expected. However, the snow depth on the following day
would reflect the event. Therefore, days with mid-morning snowfall,
depending on the magnitude of the event, might not have easily predicted

values of SWE. The measured snow depth, however, still precedes the
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SWE measurement and may be used as a predictor. Since snowfall and
precipitation can also occur in the eleven hours between the SWE
measurement and midnight they could not be used to predict SWE on the
same date. To ensure the purely predictive nature of a model, it was
decided to use the preceding 24 hour precipitation (Oldppt) and snowfall
(Oldsnfl) amounts, and the morning snowdepth as possible predictors of the
afternoon SWE. Table 6 gives the complete list of potential predictors used
in model development, including derived variables yet to be described,
along with their physical relationship to snowmelt.

As discussed earlier, other investigators have used such variables as
atmospheric moisture content and wind in their regression analyses. Since
these variables are not measured at Co-Op stations, an attempt was made to
create variables which could furnish some extra information to a
prospective model. For example, as shown in table 2, many researchers
have reported daily snowmelt as a function of cumulative degrees greater
than a base temperature, to represent heat applied to the snowpack.
Conversely, some indication of conditions being less than a ceiling
temperature could provide a measure of the cold content of the snowpack,
indicating the heat required to raise the snowpack to the freezing point and
then to ripen, or satisfy the free water holding capacity of the snow.

For this work cumulative melting degree days (Cummdd) were
calculated for days when the maximum temperature exceeded 32° F. The
cold indicator was named Maxinrow, or the number of consecutive days

when the maximum temperature was less than 32° F. Similar variables for



Table 6. Potential predictors used in model building. The prediction day is

"today", the previous day is "yesterday”, and "previous" means the

observation before the most recent. See Figure 3 for a graphical explanation.

Predictor
Measured

Maximum temperature (yesterday)
Minimum temperature (today)
Mean temperature {(Max + Min)/2}
Yesterday's precipitation
Yesterday's snowfall

7:00 a.m. snow depth (today)

Derived

Square root of snow depth (today)
Cumulative melting degree days

(the running total of (Max - 32°F.) for

successive days with Max > 32°F.)
Consecutive days with Max < 32°F.
Consecutive days with Max > 32°F.
Consecutive days with Min < 32°F.
Consecutive days with Min > 32°F.
Consecutive days with Mean < 32°F.
Consecutive days with Mean > 32°F.
Previous maximum temperature
Previous minimum temperature
Previous mean temperature
Previous snow depth
Max - Min

Abbreviation

Max

Min

Mean
Oldppt
Oldsnfl
Snowdepth

Sqrtsndp

Cummdd
Maxinrow
Hotmax
Mininrow
Hotmin
Meaninrow
Hotmean
Oldmax
Oldmin
Oldmean
Olddepth
Range

Physical role

shortwave, sensible
longwave,sensible,latent
allwave

water balance

water balance

water balance

water balance

allwave, latent

water balance

allwave, sensible
water balance

allwave, latent,sensible
water balance

allwave, latent,sensible
shortwave,sensible
longwave,sensible,latent
allwave,sensible

water balance

allwave, shortwave
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minimum and mean temperature were developed, for consecutive cold
days and also for warm days. For example, Hotmax was the number of
consecutive days with a maximum temperature greater than 32° F.

Snowdepth and temperature information for the day before the day of
the prediction were also included in the predictor list to investigate if
previous information about the snowpack and temperature conditions
would be useful.

To prepare the data for variable selection a quality control procedure was
performed. Since depth of the snow is reported either as zero, as a trace if
less than 2 inches, or as an integer if greater than or equal to 2 inches (5 cm),
all observations reporting either zero or trace were removed from the data
set. This also applied to zero or trace SWE values, other than those
associated with less than 2-inch snow depths. Precipitation less than 0.01
inch and snowfall less than 0.1 inch, both defined as traces, were set to zero,
and the variables in Table 6 not already in the data set were created for each
SWE observation. In the exceedingly rare situation where a missing value
for any variable was reported, the entire observation was removed from
further consideration.

Schmidlin (1990), investigating several NWSOs in Indiana and Ohio,
described some problems with daily summary datasets ranging from
typographical errors to physically impossible values. For this work obvious
keypunch errors were corrected, while lapses in continuity or logic were
grounds for the omission of the entire observation. Such lapses typically
involved dramatic changes in SWE not justified by additional snowfall or
rainfall, or by temperature extremes. Removed observations amounted to a

very small percentage of the 28- to 35-year datasets. In the worst case, 3 of
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138 days with greater than two inches of snow on the ground at LaGuardia
Airport in New York City were omitted from 33 years of January

observations.

4.2 Exploratory Model Building

Binghamton, NY was arbitrarily selected to be the station used for initial
model development. After the Binghamton data set had been assembled, it
was divided by month. January days not following a day when rain had
fallen were used. Rain-on-snow days were determined by separating all
days when "yesterday's" precipitation was non-zero, snowfall was zero, and
both maximum and minimum temperatures were above freezing. Rain on
snow days defined in this manner amounted to approximately 5% of all
observations and, due to rain's ability to dramatically affect SWE (see section
2.3), were set aside for later analysis. The small number of these days
suggested they should be reserved until development had reached the point
where all of the occurrences at the 15 NWSOs could be pooled, at least by
month.

Half of the remaining January data were reserved for use in verification,
by placing alternate observations into subsets. This method was used to
produce 2 essentially independent data sets. It avoided the potential
problem associated with separating a 34 year record into two 17-year periods.
Selecting alternate observations reduced the possibility of missing a trend
over the entire length of the data record, by developing a model with a
subset dominated by a period of above- or below- normal snow seasons.

The developmental half of the data set for January was subjected to

several analytical procedures involving least-squares regression. The best
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possible R? value was obtained by regressing daily SWE against the entire
potential predictor list (Table 6). This predictor list was then reduced with a
stepwise selection procedure (Neter, et al., 1985; and Appendix A) using
SWE as the dependent variable. It is worth noting that days following no
precipitation events (solid or liquid) were used first to control against the
influence of fresh snow on SWE values. This yielded snow depth
(Snowdepth) and Maxinrow as predictors. When days following snow
events were included, the variable selection procedure again yielded
Snowdepth and Maxinrow, but also included yesterday's snowfall (Oldsnfl),
and yesterday's precipitation (Oldppt) as predictors for today's SWE in
Binghamton for January.

Standardized residual analysis of the multiple regression results,
described in Appendix B, was used to determine if errors were normally
distributed or whether transformations of the variables would be necessary
(Neter, et al., 1985). Residual plots indicated increasing variance of predicted
SWE as snowdepth increased. This suggested the need for a transformation
of SWE. A test after Box and Cox (Draper & Smith, 1981; and Appendix C)
indicated a square root transformation of SWE would make the residual
variance nearly constant over the entire range of snow depth. This would
also make the root mean squared error (RMSE) representative of the entire
range of data (see Appendix C). Rerunning the selection procedure using
the square root of SWE (sqrtSWE) as predictand produced the same
predictors, but yielded curvature in the residuals when plotted against snow
depth. This directly indicated the need for a transformation of snow depth,
and the square root of snow depth (sqrtSndp) was substituted (see Appendix

B for details). The resulting regression yielded normally distributed
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residuals with essentially constant variance.

The calibrated model was verified by cross validating with the reserved
half of the dataset. Root mean squared error and the coefficients of multiple
correlation (R2) were compared for the two dataset halves. The
developmental half-set showed a R2 of 64.9% and a RMSE of 0.2385, while
the reserved half-set showed a slightly lower R? of 64.1% and a RMSE of
0.2393. Since both were quite similar, one more test remained before
combining the data set halves and producing the final January Binghamton
model. A bootstrap analysis was performed, whereby 20 samples equivalent
in size to the half-data set were selected with replacement from the
validation set. This served to create 20 new, essentially independent data
sets. Step-wise regression utilizing the full potential predictor list (Table 6)
was repeated for each of the new sets and the selected predictors were
recorded and tallied. In all 20 runs sqrtSndp and Oldsnfl were both selected,
while Maxinrow appeared 19 times and Oldppt 17 times. Meaninrow,
selected 14 times, was the only other variable chosen in more than 8 runs
out of 20. Since the 4 predictors were selected in most of the 20 runs, the
variables were considered stable. The final parameter estimates were
determined by combining both halves of the data set and again regressing
sqrtSWE against the 4 predictors. For completeness a 5-variable model
including Meaninrow was run, and the improvement in R2 of 0.5% was
deemed not sufficient to complicate the final 4-variable model with an extra

predictor.
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4.3 Results of Model Development

The final model for Binghamton in January used sqrtSndp, Maxinrow,
Oldsnfl, and Oldppt to predict sqrtSWE for all January days with snow on
the ground, except those preceded by a day with rain. These predictors were
then used on the remaining New York and New England NWSOs, after the
data set for each station had been checked, corrected, additional variables
had been created, and rain on snow days had been reserved. For each
station the full data set was analyzed, first with all of the possible predictors,
then with stepwise selection, and finally with the variables selected for
Binghamton.

In most cases the stepwise procedure selected the same variables for the
other 14 stations as had been selected for Binghamton. At this point 15
models for January existed, but the ultimate goal was to develop the
simplest, yet most widely applicable model. Such a model would utilize the
same variables, if possible, at all locations. Since this step of the procedure
had shown that sqrtSndp, Maxinrow, Oldsnfl, and Oldppt were significant
predictors at most of the 15 offices, it was decided to force the same
predictors on all of the stations for the rest of the winter months.

Models using the same predictors were produced for December and
February with virtually the same range for R? and RMSEs as January.
Tables 7, 8, and 9 show the parameter estimates, the RMSE, and the R2 for
each station, for December, January, and February, respectively. The R2
indicates that between 43.3% and 87.5% of the variation in sqrtSWE was
described by the models for the winter months, with a median value of

66.0%. RMSEs ranged from 0.054 at LaGuardia-NYC in December to 0.434 at
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Concord in February. With the exception of Oldppt, parameter estimates
were very similar from station to station within months. All were of the
same order of magnitude for each variable, and Oldppt coefficients exhibited
more variability than the others.

Tables 7, 8, and 9 also show the R2 and RMSE when all potential
predictors in Table 6 are regressed against sqrtSWE. During the entire
winter period, several stations showed a loss of R2 in excess of 5% and a
corresponding increase in RMSE when the 4-variable model was compared
with the model using all of the potential predictors. While reducing the
number of predictors in a model will also reduce the R2, some of the
observed losses may have been larger than this would explain. This
indicates that at these stations, predictors other than those developed for

Binghamton may have been slightly more appropriate.
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A parameter estimate divided by its standard error yields its t-ratio.
When sample sizes greater than 30 are used, as was the case with all winter
month data, the t- distribution resembles the normal distribution.
Calculated t-ratios greater than 1.96 indicate a significant predictor at the
95% confidence level, when the variable in question is in a model with
other variables. In other words, in multiple regression the t-ratio for a
variable's parameter estimate also depends on the presence of other
predictors.

Tables 10, 11, and 12 give the t-ratios for the constant and 4 predictors at
all 15 stations, for December, January and February. In 34 of the 44
remaining data sets from the three winter months, the variables chosen for
Binghamton in January were also all significant predictors. It is clear from
t-ratios that removing sqrtSndp would result in a greater loss in the model's
ability to describe sqrtSWE variability than would the removal of any of the
other three predictors. Oldsnfl and Oldppt are fairly consistent in their
importance, while the significance of Maxinrow varies between months and
stations. In December, Maxinrow was not a significant predictor at Buffalo,
Rochester, or Syracuse, while Oldsnfl and Oldppt were not significant at
LaGuardia-NYC. In January, Concord, LaGuardia-NYC, and Syracuse did
not show Maxinrow to be a significant predictor. In February, Maxinrow
was not significant at LaGuardia-NYC, Portland, or Worcester, nor was
Oldsnfl significant at Hartford or LaGuardia-NYC.

Maxinrow's lack of significance as a predictor for Great Lakes and coastal
stations at various times during the winter months may simply be a factor
of the warming influence of adjacent bodies of water. Sustained sub-

freezing maximum temperatures may only be of short duration at these
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sites and a Maxinrow value of 1 or 2 would not appreciably affect the
sqrtSWE. Non-significant Oldsnfl or Oldppt may indicate infrequent snow
events followed by several days of snowcover. In these cases Oldsnfl and
Oldppt are set to zero most of the time.

The limited usefulness of Maxinrow during short duration cold periods
becomes more evident when using the same predictors in November,
March, and April. Tables 13, 14, and 15 show parameter estimates and
statistics for these months. Tables 16, 17, and 18 contain the corresponding
t-ratios for the parameter estimates. In March R2 ranges from 41.1% for
Providence to 90.3% for LaGuardia-NYC and RMSE ranges from 0.066 for
LaGuardia-NYC to 0.388 for Concord. This month also has 8 of 15 stations
where Maxinrow is not a significant predictor, half of which are Atlantic
coastal locations. Some of these also exhibited a large decrease in R? and
increase in RMSE from the model including all potential predictors.
November and April are only included for completeness, since sample sizes
show that for most stations an average of only one day with a significant
snowpack occurs per year in these months. Note from the R? values that
only Caribou and Portland, ME have meaningful models for April,

although their RMSEs are both in excess of 0.4.
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To give an indication of the accuracy of the models, Table 19 shows 67%
prediction intervals, representing values of SWE plus or minus one RMSE
for selected levels of untransformed SWE and a range of RMSEs. The wide
range at higher actual SWE values is at first disturbing, but quite reasonable
when a scatterplot of SWE against snow depth is viewed (see Figure 4).
With increasing snow depth, SWE also increases, but becomes more
variable. Figure 5 graphically displays the widening prediction interval for
an RMSE of 0.25. The slight asymmetry is attributable to the squaring of the
untransformed upper and lower limits. Worthy of note is that even at
higher values of SWE, 67% of the predictions fall within about £15% of the

observed values.
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4.4 Comparison of New Models with Degree-Day Models

What must be considered at this point is whether these new models are
an improvement over the traditional degree-day models (e.g.; Table 2).
Such a comparison may also determine if degree-day models, or at least the
inclusion of a degree-day term, would be more appropriate in the autumn
and spring months. In other words, would the large decrease in R? between
the full prediction model and the 4-variable model be less extreme if
Cummdd, the cumulative number of degrees with the maximum
temperature greater than freezing, were substituted for Maxinrow? It
should be noted that for this test no variable selection trials were performed;
Cummdd was included as the fourth variable with sqrtSndp, Oldsnfl, and
Oldppt. The results of both four variable models for the winter months are
presented in tables 20, 21, and 22 in terms of RZ and RMSE. It is clear that
although most stations and months showed very little difference in R? and
RMSE between the models, the models incorporating Maxinrow are almost
always slightly better than the Cummdd models. The same comparisons
were performed for November, March, and April, and the results are shown
in Tables 23, 24, and 25. Although the Cummdd models show slightly
improved performance in these months, the Maxinrow models are still
usually better. In general, substituting Cummdd for Maxinrow does not
regain any of the precision lost when the full models are reduced to the
four-variable models. Substituting Cummdd for Maxinrow would just
increase the prediction interval range by approximately 0.15 inches (3.5 mm)
in the most extreme case of a 10 inch (25 cm) SWE value for Concord in

December.
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Table 20. December comparisons between Cummdd and Maxinrow
models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummdd as the fourth variable.

December Cummdd December Maxinrow
Station RMSE r-squared RMSE r-squared
Albany 0.177 0.715 0.174 0.725
Binghamton 0.213 0.546 0.211 0.555
Boston 0.172 0.641 0.167 0.660
Bridgeport 0.137 0.553 0.132 0.590
Buffalo 0.159 0.789 0.159 0.788
Burlington 0.154 0.748 0.147 0.770
Caribou 0.229 0.746 0.225 0.755
Concord 0.270 0.477 0.258 0.522
Hartford 0.199 0.633 0.194 0.656
LaGuardia-NYC 0.049 0.897 0.054 0.875
Portland 0.213 0.706 0.209 0.719
Providence 0.208 0.400 0.203 0.433
Rochester 0.173 0.654 0.173 0.655
Syracuse 0.155 0.647 0.154 0.647
Worcester 0.274 0.461 0.269 0.481
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Table 21. January comparisons between Cummdd and Maxinrow
models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummdd as the fourth variable.

January Cummdd January Maxinrow
Station RMSE r-squared RMSE r-squared
Albany 0.206 0.744 0.205 0.747
Binghamton 0.252 0.601 0.240 0.639
Boston 0.185 0.723 0.176 0.748
Bridgeport 0.161 0.597 0.158 0.614
Buffalo 0.276 0.708 0.275 0.710
Burlington 0.224 0.674 0.223 0.678
Caribou 0.345 0.639 0.344 0.642
Concord 0.333 0.471 0.342 0.442
Hartford 0.248 0.564 0.247 0.570
LaGuardia-NYC 0.080 0.857 0.080 0.857
Portland 0.315 0.649 0.306 0.667
Providence 0.184 0.417 0.181 0.433
Rochester 0.248 0.581 0.245 0.589
Syracuse 0.261 0.556 0.263 0.552
Worcester 0.225 0.618 0.223 0.625
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Table 22. February comparisons between Cummdd and Maxinrow
models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummadd as the fourth variable.

February Cummdd February Maxinrow
Station RMSE r-squared RMSE r-squared
Albany 0.293 0.496 0.293 0.497
Binghamton 0.306 0.572 0.302 0.583
Boston 0.218 0.677 0.217 0.682
Bridgeport 0.230 0.550 0.228 0.554
Buffalo 0.294 0.786 0.288 0.794
Burlington 0.277 0.668 0.267 0.691
Caribou 0.344 0.689 0.347 0.683
Concord 0.436 0.432 0.434 0.439
Hartford 0.256 0.602 0.251 0.617
LaGuardia-NYC 0.163 0.805 0.180 0.763
Portland 0.355 0.677 0.355 0.677
Providence 0.195 0.807 0.195 0.807
Rochester 0.270 0.669 0.266 0.677
Syracuse 0.287 0.708 0.287 0.707
Worcester 0.257 0.676 0.262 0.663
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Table 23. November comparisons between Cummdd and Maxinrow
models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummadd as the fourth variable. Only stations with
more than 32 observations during the data record included.

November Cummdd

November Maxinrow

Station RMSE r-squared RMSE r-squared
Albany 0.179 0.632 0.192 0.578
Binghamton 0.186 0.523 0.182 0.545
Boston

Bridgeport

Buffalo 0.103 0.754 0.103 0.753
Burlington 0.123 0.542 0.123 0.543
Caribou 0.142 0.800 0.139 0.809
Concord 0.170 0.322 0.169 0.324
Hartford

LaGuardia-NYC

Portland

Providence

Rochester 0.127 0.732 0.130 0.720
Syracuse 0.171 0.588 0.171 0.587
Worcester 0.173 0.610 0.172 0.612
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Table 24. March comparisons between Cummdd and Maxinrow
models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummdd as the fourth variable.

March Cummdd

March Maxinrow

Station RMSE r-squared RMSE r-squared

Albany 0.221 0.569 0.220 0.572
Binghamton 0.282 0.596 0.282 0.597
Boston 0.244 0.673 0.244 0.673
Bridgeport 0.156 0.426 0.157 0.422
Buffalo 0.291 0.613 0.287 0.625
Burlington 0.280 0.729 0.286 0.717
Caribou 0.375 0.698 0.384 0.683
Concord 0.387 0.591 0.388 0.589
Hartford 0.306 0.436 0.303 0.450
LaGuardia-NYC 0.065 0.905 0.066 0.903
Portland 0.359 0.688 0.359 0.689
Providence 0.267 0.405 0.265 0.411
Rochester 0.277 0.726 0.278 0.725
Syracuse 0.308 0.618 0.295 0.649
Worcester 0.299 0.580 0.304 0.565




Table 25. April comparisons between Cummdd and Maxinrow

models. 4-variable models incorporating sqrtSndp, Oldsnfl, and Oldppt,
with Maxinrow or Cummadd as the fourth variable. Only stations with
more than 32 observations during the data record included.

Station

April Cummdd

April Maxinrow

RMSE

r-squared

RMSE r-squared

Albany

Binghamton

0.326

0.230

0.320 0.255

Boston

Bridgeport

Buffalo

Burlington

0.304

0.301

0.301 0.318

Caribou

0.416

0.662

0.425 0.647

Concord

Hartford

LaGuardia-NYC

Portland

0.389

0.515

0.406 0.472

Providence

Rochester

Syracuse

Worcester
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A more precise test of the predictive ability of Cummdd was also
performed. Since most degree-day models (Table 2) utilize only degree-days
as a predictor for snowmelt, Cummdd alone was used to predict the daily
change in untransformed SWE. The R? and RMSE obtained from January
data, shown in Table 26, reveal that essentially no variation in the change in
daily SWE is described by a model using Cummdd as sole predictor.

Table 26. Statistics for predicting the change

in the daily SWE using only Cummdd as
the predictor. January results only.

Station RMSE  r-squared
Albany 0.250 0.001
Binghamton 0.254 0.000
Boston 0.393 0.010
Bridgeport 0.311 0.010
Buffalo 0.422 0.000
Burlington 0.364 0.000
Caribou 0.555 0.010
‘Concord 0.241 0.010
Harttord 0.271 0.026
LaGuardia-NYC 0.228 0.000
Portland 0.303 0.010
Providence 0.294 0.031
Rochester 0.269 0.000
Syracuse 0.236 0.000
Worcester 0.294 0.070

4.5 Discussion of Monthly Station Models

The wide range of R? values for stations in any given month may be
attributed to a combination of different climatologies and measurement
error. The type or types of snow which characterize a particular area are
determined by the climatology of each location. For example, coastal

stations usually receive snowfall from weather systems moving up the
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Atlantic coastline. These tend to be very moist and warm, providing
uniformly wet or high-density snow to the observing sites. This may
explain the generally high R2 values found at coastal stations.

The other extreme appears to be Concord, NH, with uniformly low R2
values. This station is located far enough inland to be influenced not only
by warm, moist coastal storms, but also colder systems moving up the Ohio
Valley and across the Great Lakes, and cold Canadian outbreaks. These
three scenarios probably result in a wide variation in snow characteristics,
possibly accounting for low values of R2.

Other stations tend to be influenced by either Great Lakes systems alone,
or only systems coming from Canada, resulting in less variability of
snowpack characteristics and higher R? values.

The other influence on R2 is measurement error, since three possible
methods of determining SWE are in use. Schmidlin and Edgell (1989)
investigated NWSOs in Indiana and Ohio and learned that a snowpack core
may either be melted or weighed to determine SWE, or if neither method is
feasible, SWE may be estimated. Since variability was found to exist
between the techniques, the predictive ability among the models developed
in this investigation may be affected. Further examination of this problem
could lead to model improvements and is recommended.

The physical role of the 4 predictors is clear for all except Maxinrow.
While sqrtsndp, Oldsnfl, and Oldppt are either components or related to
components of the water balance of the snowpack, Maxinrow is unusual. It
is highly correlated with cumulative freezing degree days (the running total
of 32° F. - maximum temperature, for consecutive days with the maximum
temperature less than freezing). Table 27 illustrates a consistent negative

correlation between Maxinrow and the mean density of the snowpack for
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Table 27. Correlation between Maxinrow and mean

snowpack density by month.

Station December January February
Albany -0.438 -0.434 -0.257
Binghamton -0.269 -0.465 -0.408
Boston -0.475 -0.545 -0.316
Bridgeport -0.574 -0.494 -0.402
Buffalo -0.501 -0.393 -0.222
Burlington -0.494 -0.401 -0.418
Caribou -0.422 -0.461 -0.479
Concord -0.496 -0.304 -0.024
Hartford -0.554 -0.406 -0.495
LaGuardia-NYC -0.448 -0.524 -0.238
Portland -0.384 -0.456 -0.311
Providence -0.403 -0.167 -0.396
Rochester -0.322 -0.403 -0.402
Syracuse -0.354 -0.318 -0.247
Worcester -0.437 -0.465 -0.295
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the 15 NWSOs in the three winter months. High mean snowpack density
never occurs with larger values of Maxinrow, as is shown in Figure 6 for
January Binghamton data. This points to Maxinrow as a weak guide to
snowpack ripeness, or how close the snowpack is to being isothermal and at
its free-water holding capacity. For most of the stations and months
Maxinrow consistently serves to reduce the SWE. If Maxinrow equals zero
then the square root of SWE may be that of a ripe or nearly ripe snowpack.
If Maxinrow is non-zero the resulting water content is possibly being
corrected for non-ripeness. Therefore, Maxinrow may also be describing a
component of the snowpack water balance.

Perhaps a more intuitive approach would be to consider snowfall and
snowpack characteristics under various temperature scenarios. A large
Maxinrow indicates an extended period of below-freezing maximum
temperatures. Snow falling under these conditions would probably be of
low density, as would the resulting snowpack. Smaller values of Maxinrow
could either indicate warmer conditions and a snowpack of higher density,
or recent warming of a low-density pack. It would be more likely
accompanied by snowfall of high density. Whichever the case, the result
would be a snowpack of higher density with higher SWE than the snowpack
under prolonged cold. Whereas the degree-day approach reduces daily melt
to a constant value if the appropriate temperature falls below the base
temperature and a constant term is present, Maxinrow as an indicator of
thermal conditions does not fail below freezing, supporting the observation
from data records that SWE decreases do occur with sub-freezing

temperatures.
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Figure 6. Mean snowpack density vs. Maxinrow for Binghamton in January
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4.6 Development of Grouped Models

Since the same predictors were significant and their coefficients were
similar for most of the stations in the winter months, the possibility of
grouping suggested they be forced on all of the stations in December and
February. The goal of producing a prediction model for Co-Op stations
located between NWSOs could be greatly simplified by combining NWSO-
derived equations, rather than having 3 monthly models for each of 15
stations during the winter. An approach not previously described in the
snow literature was used to create models with wider applicability than
provided by monthly station formulas.

Slope and intercept models with dummy variables is a method which
can be used to group many stations and test whether one parameter
estimate per variable is suitable for all stations within the group, or whether
parameter estimates are site-specific (Neter, et al., 1985 and Appendix D). If
the parameter estimate for each variable is suitable for all of the stations,
and only the intercept terms are specific for each location, this analysis
creates a family of parallel lines with separate intercepts for each station.
The result is one model with more general application possibilities than the
original 15 monthly station models.

Groups were subjectively formed which encompassed stations sharing
geographic and topographic similarities, and are outlined in Figure 7. The
groups checked included Coastal (Portland, Boston, Providence, Bridgeport,
LaGuardia-New York City), Mountain (Caribou, Concord, Burlington,
Albany, Worcester, Hartford), and Western New York (Buffalo, Rochester,
Binghamton, Syracuse). The 15 stations were also combined into a single

"Total" group. Tables 28, 29, and 30 (a-d) shows RZ, RMSE, station
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intercepts, and the parameter estimates for the various December, January,
and February grouped models. Rain on snow days, previously reserved
because of their infrequent occurrences, are included as a dummy variable
functioning as a correction factor added to the intercept calculation.

Grouping across the three winter months of December, January and
February resulted in an additional set of models. Table 31 (a-d) shows the
three-month winter models for the geographic groups and the winter
"Total" model involving all 15 stations. This grouping procedure not only
created separate intercepts for each station, but also dummy variables which
served to provide correction factors for month, and for those 5% of all
observations which followed a day where rain fell on snow, as before.
Although the R2 for all of the grouped models varies, 72% of the variation
in sqrtSWE is still being described by the "Total" winter model, with a
RMSE of 0.28.

The correction factors for month show that for identical conditions less
water is contained in the snowpack in January than February, and in
December than in either of the other winter months. It is difficult to
determine the reason for this situation. Perhaps it is more likely for later
snowpacks to have undergone melting and refreezing. Percolation of liquid
water through the snowpack followed by freezing may result in an increase
in snowpack density due to the presence of ice. December snowpacks may
have lower SWE values on average simply because they have not
experienced as many freeze-thaw cycles. The rain-on-snow correction factor
reflects the additional SWE present in a snowpack after receiving rain,

compared to one which has not received liquid precipitation.
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Table 28a. December coastal grouping, showing station

intercepts, pooled parameter estimates, rain-on-snow

correction factor, and statistics. A t-ratio value less than
0.05 indicates a significant predictor at the

95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Boston 0.041 0.025 1.63 0.102
Bridgeport -0.059 0.028 -2.08 0.037
LaGuardia-NYC -0.123 0.032 -3.81 0.000
Portland 0.005 0.025 0.20 0.844
Providence -0.018 0.025 -0.72 0.472
Slope

sqrtsndp 0.390 0.010 38.09 0.000
maxinrow -0.021 0.003 -6.45 0.000
oldsnfl -0.043 0.004 -10.40 0.000
oldppt 0.266 0.026 10.29 0.000
Correction to intercept

rain on snow | 0.065 0.030 2.14 0.033
R-squared = 0.693 RMSE = 0.192 n=839
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Table 28b. December mountain grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than

0.05 indicates a significant predictor at the

95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Albany 0.043 0.017 2.56 0.000
Burlington -0.060 0.016 -3.75 0.016
Caribou 0.077 0.017 4.47 0.001
Concord 0.053 0.016 3.33 0.000
Hartford 0.044 0.018 2.40 0.000
Worcester 0.063 0.018 3.56 0.010
Slope

sqrtsndp 0.366 0.005 68.57 0.000
maxinrow -0.012 0.001 -10.54 0.000
oldsnfl -0.043 0.003 -13.82 0.000
oldppt 0.289 0.025 11.66 0.000
Correction to intercept

rain on snow | 0.128 0.022 5.88 0.000
r-squared = 0.686 RMSE = 0.225 n=2687
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Table 28c. December western New York grouping, showing
station intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Buffalo -0.043 0.019 -2.33 0.020
Rochester -0.020 0.017 -1.14 0.256
Binghamton -0.042 0.017 -2.48 0.013
Syracuse -0.157 0.019 -8.48 0.000
Slope

sqrtsndp 0.382 0.008 49.52 0.000
maxinrow -0.007 0.002 -4.11 0.000
oldsnfl -0.042 0.003 -12.68 0.000
oldppt 0.281 0.033 8.55 0.000
Correction to intercept

rain on snow | 0.083 0.027 3.12 0.002
r-squared =0.660 RMSE = 0.181 n=1586
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Table 28d. December total grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Albany 0.028 0.014 1.98 0.048
Binghamton -0.009 0.013 -0.74 0.461
Boston 0.055 0.019 291 0.004
Bridgeport -0.045 0.024 -1.86 0.064
Buffalo -0.015 0.014 -1.13 0.259
Burlington -0.079 0.013 -6.01 0.000
Caribou 0.055 0.013 4.12 0.000
Concord 0.037 0.013 2.89 0.004
Hartford 0.031 0.016 1.95 0.051
LaGuardia-NYC -0.104 0.030 -3.46 0.001
Portland 0.023 0.013 1.70 0.090
Providence -0.007 0.019 -0.38 0.704
Rochester 0.006 0.013 0.44 0.663
Syracuse -0.130 0.014 -9.18 0.000
Worcester 0.048 0.015 3.20 0.001
Slope

sqrtsndp 0.374 0.004 93.52 0.000
maxinrow -0.011 0.001 -12.96 0.000
oldsnfl -0.042 0.002 -21.19 0.000
oldppt 0.279 0.016 17.68 0.000
Correction to intercept

rain on snow | 0.105 0.015 7.10 0.000
r-squared = 0.696 RMSE = 0.207 n=5112
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Table 29a. January coastal grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than
0.05 indicates a significant predictor at the

95% confidence level.

Intercept Estimates  std.err. t-raio prof>t
Boston -0.028 0.022 -1.30 0.194
Bridgeport -0.106 0.022 -4.76 0.000
LaGuardia-NYC -0.160 0.025 -6.29 0.000
Portland 0.063 0.023 2.78 0.005
Providence -0.020 0.021 -0.96 0.335
Slope

sqrtsndp 0.427 0.008 53.62 0.000
maxinrow -0.019 0.002 -8.86 0.000
oldsnfl -0.055 0.004 -12.49 0.000
oldppt 0.303 0.030 10.22 0.000
Correction to intercept

rain on snow | 0.130 0.031 4.26 0.000
r-squared = 0.715 RMSE = 0.245 n=1772
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Table 29b. January mountain grouping, showing station

intercepts, pooled parameter estimates, rain-on-snow

correction factor, and statistics. A t-ratio value less than

0.05 indicates a significant predictor at the

95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Albany 0.128 0.016 7.84 0.000
Burlington 0.015 0.016 0.93 0.351
Caribou 0.199 0.020 9.78 0.000
Concord 0.179 0.017 10.38 0.000
Hartford 0.124 0.017 7.22 0.000
Worcester 0.056 0.018 3.05 0.002
Slope

sqrtsndp 0.372 0.005 76.53 0.000
maxinrow -0.007 0.001 -8.51 0.000
oldsnfl -0.047 0.003 -13.63 0.000
oldppt 0.308 0.030 10.29 0.000
Correction to intercept

rain on snow | 0.069 0.021 3.25 0.001
r-squared = 0.687 RMSE = 0.287 n=4260
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Table 29¢. January western New York grouping, showing
station intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Binghamton 0.007 0.018 0.38 0.704
Buffalo -0.057 0.020 -2.87 0.004
Rochester -0.017 0.018 -0.92 0.357
Syracuse -0.079 0.019 -4.20 0.000
Slope

sqrtsndp 0.430 0.007 61.96 0.000
maxinrow -0.007 0.001 -7.19 0.000
oldsnfl -0.062 0.004 -15.25 0.000
oldppt 0.405 0.045 9.08 0.000
Correction to intercept

rain on snow | 0.108 0.026 4.15 0.000

r-squared = 0.621 RMSE = 0.260 n=2830
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Table 29d. January total grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Albany 0.072 0.014 5.29 0.000
Binghamton 0.096 0.013 7.45 0.000
Boston 0.019 0.017 1.10 0.270
Bridgeport -0.057 0.019 -3.05 0.002
Buffalo 0.043 0.014 3.05 0.002
Burlington -0.044 0.013 -3.33 0.001
Caribou 0.113 0.016 7.24 0.001
Concord 0.111 0.014 8.01 0.000
Hartford 0.070 0.015 4.74 0.000
LaGuardia-NYC -0.126 0.024 -5.26 0.000
Portland 0.122 0.014 8.99 0.001
Providence 0.019 0.017 1.13 0.258
Rochester 0.067 0.013 5.07 0.000
Syracuse 0.003 0.013 0.27 0.790
Worcester -0.009 0.015 -0.56 0.574
Slope

sqrtsndp 0.395 0.004 111.34 0.000
maxinrow -0.007 0.001 -12.61 0.000
oldsnfl -0.052 0.002 -23.13 0.000
oldppt 0.328 0.019 17.14 0.000
Correction to intercept

rain on snow 0.090 0.014 6.24 0.000
r-squared = 0.689 RMSE = 0.272 n=8862
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Table 30a. February coastal grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow

correction factor, and statistics. A t-ratio value less than

0.05 indicates a significant predictor at the

95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Boston -0.073 0.027 -2.74 0.006
Bridgeport -0.137 0.028 -4.90 0.000
LaGuardia-NYC -0.245 0.030 -8.05 0.000
Portland 0.115 0.027 4.21 0.000
Providence -0.115 0.028 -4.16 0.000
Slope

sqrtsndp 0.464 0.009 54.00 0.000
maxinrow -0.011 0.003 -3.99 0.000
oldsnfl -0.064 0.006 -11.65 0.000
oldppt 0.320 0.040 8.03 0.000
Correction to intercept

rain on snow | 0.166 0.037 4.52 0.000
r-squared = 0.743 RMSE = 0.295 n = 1548
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Table 30b. February mountain grouping, showing station

intercepts, pooled parameter estimates, rain-on-snow

correction factor, and statistics. A t-ratio value less than

0.05 indicates a significant predictor at the
95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Albany 0.151 0.019 7.81 0.000
Burlington 0.099 0.019 5.10 0.000
Caribou 0.350 0.025 14.11 0.000
Concord 0.299 0.020 14.78 0.000
Hartford 0.069 0.021 3.23 0.001
Worcester -0.068 0.022 -3.11 0.002
Slope

sqrtsndp 0.389 0.005 72.57 0.000
maxinrow -0.007 0.001 -7.87 0.000
oldsnfl -0.054 0.004 -13.23 0.000
oldppt 0.309 0.037 8.39 0.000
Correction to intercept

rain on snow | 0.139 0.027 5.15 0.000

r-squared = 0.719 RMSE =0.333 n = 3824
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Table 30c. February western New York grouping, showing
station intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof>t
Binghamton -0.014 0.020 -0.69 0.490
Buffalo -0.096 0.021 -4.49 0.000
Rochester -0.036 0.020 -1.77 0.076
Syracuse -0.171 0.023 -7.44 0.000
Slope

sqrtsndp 0.490 0.007 67.79 0.000
maxinrow -0.010 0.001 -9.74 0.000
oldsnfl -0.073 0.005 -14.96 0.000
oldppt 0.391 0.051 7.69 0.000
Correction to intercept

rain on snow | 0.163 0.029 5.72 0.000
r-squared = 0.688 RMSE = 0.291 n =2308




Table 30d. February total grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
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correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

Intercept Estimates  std.err. t-ratio prof >t
Albany 0.059 0.016 3.61 0.000
Binghamton 0.129 0.016 8.13 0.000
Boston 0.006 0.021 0.29 0.772
Bridgeport -0.061 0.024 -2.58 0.010
Buffalo 0.052 0.017 3.14 0.002
Burlington -0.005 0.016 -0.30 0.762
Caribou 0.193 0.019 10.28 0.000
Concord 0.184 0.016 11.25 0.000
Hartford -0.020 0.019 -1.09 0.274
LaGuardia-NYC -0.176 0.027 -6.43 0.000
Portland 0.216 0.016 13.27 0.000
Providence -0.032 0.022 -1.44 0.150
Rochester 0.105 0.016 6.79 0.000
Syracuse -0.009 0.018 -0.49] 623.000
Worcester -0.180 0.018 -9.90 0.000
Slope

sqrtsndp 0.427 0.004 110.67 0.000
maxinrow -0.008 0.001 -11.77 0.000
oldsnfl -0.061 0.003 -21.99 0.000
oldppt 0.327 0.024 13.82 0.000
Correction to intercept

rain on snow 0.153 0.018 8.73 0.000
r-squared = 0.721 RMSE = 0.316 n =7680
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Table 31a. Winter coastal grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.
The model is for February data, with corrections for
December and January.

Intercept Estimates  std. err. t-ratio prof>t
Boston 0.032 0.017 1.95 0.051
Bridgeport -0.047 0.017 -2.76 0.006
LaGuardia-NYC -0.127 0.019 -6.86 0.000
Portland 0.132 0.017 791 0.000
Providence 0.012 0.016 0.72 0.473
Slope

sqgrtsndp 0.440 0.005 84.28 0.000
maxinrow -0.016 0.002 -10.75 0.000
oldsnfl -0.058 0.003 -20.35 0.000
oldppt 0.306 0.019 15.73 0.000
Correction to intercept

December -0.178 0.012 -15.39 0.000
January -0.090 0.009 -9.77 0.000
rain on snow 0.129 0.020 6.46 0.000
r-squared = 0.732 RMSE = 0.262 n=4159
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Table 31b. Winter mountain grouping, showing station
intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.

The model is for February data, with corrections for

December and January.

Intercept Estimates  std. err. t-ratio prof>t
Albany 0.207 0.011 17.82 0.000
Burlington 0.118 0.012 10.19 0.000
Caribou 0.307 0.014 22.27 0.000
Concord 0.283 0.012 23.66 0.000
Hartford 0.217 0.013 16.24 0.000
Worcester 0.099 0.013 7.80 0.000
Slope

sqrtsndp 0.382 0.003 124.71 0.000
maxinrow -0.008 0.001 -14.04 0.000
oldsnfl -0.050 0.002 -23.06 0.000
oldppt 0.310 0.018 16.78 0.000
Correction to intercept

December -0.231 0.008 -28.97 0.000
January -0.119 0.007 -17.32 0.000
rain on snow 0.099 0.014 7.10 0.000
r-squared = 0.720 RMSE = 0.296 n=10771
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Table 31c. Winter western New York grouping, showing
station intercepts, pooled parameter estimates, rain-on-snow
correction factor, and statistics. A t-ratio value less than 0.05
indicates a significant predictor at the 95% confidence level.
The model is for February data,with corrections for
December and January.

Intercept Estimates  std. err. t-ratio prof>t
Binghamton 0.062 0.012 5.13 0.000
Buffalo 0.002 0.013 0.19 0.852
Rochester 0.048 0.012 3.89 0.000
Syracuse -0.058 0.013 -4.35 0.000
Slope

sqrtsndp 0.450 0.004 105.01 0.000
maxinrow -0.009 0.001 -13.37 0.000
oldsnfl -0.061 0.002 -24.77 0.000
oldppt 0.360 0.026 13.84 0.000
Correction to intercept

December -0.210 0.009 -24.44 0.000
January -0.090 0.007 -12.48 0.000
rain on snow 0.121 0.016 7.49 0.000
r-squared = 0.688 RMSE = 0.257 n=6724
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Table 31d. Winter total grouping, showing station intercepts,
pooled parameter estimates, rain-on-snow correction factor,
and statistics. A t-ratio value less than 0.05 indicates a
significant predictor at the 95% confidence level. The model
is for February data, with corrections for December and
January. As an example, the model for Binghamton in
January would be SqrtSWE = 0.155 - 0.096 + 0.408 * Sqrtsndp
- 0.008 * Maxinrow - 0.054 * Oldsnfl + 0.318 * Oldppt. If rain
had fallen on the day before the prediction, add 0.118

to the intercept.

Intercept Estimates  std. err. t-ratio prof>t
Albany 0.128 0.009 13.58 0.000
Binghamton 0.155 0.009 17.36 0.000
Boston 0.092 0.012 7.73 0.000
Bridgeport 0.011 0.013 0.84 0.400
Buffalo 0.106 0.010 11.17 0.000
Burlington 0.033 0.009 3.60 0.000
Caribou 0.192 0.100 18.76 0.000
Concord 0.191 0.009 20.47 0.000
Hartford 0.101 0.010 9.79 0.000
LaGuardia-NYC -0.079 0.016 -4.86 0.000
Portland 0.205 0.009 22.06 0.000
Providence 0.068 0.012 5.67 0.000
Rochester 0.180 0.009 19.18 0.000
Syracuse 0.044 0.010 4.64 0.000
Worcester 0.011 0.010 1.03 0.304
Slope

sqrtsndp 0.408 0.002 182.60 0.000
maxinrow -0.008 0.000 -20.16 0.000
oldsnfl -0.054 0.001 -38.15 0.000
oldppt 0.318 0.012 26.77 0.000
Correction to intercept

December -0.200 0.005 -39.35 0.000
January -0.096 0.005 -21.20 0.000
rain on snow 0.118 0.009 12.45 0.000
r-squared = 0.720 RMSE = 0.280 n=21654
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Grouped models, whether for individual months or the entire winter
season, show consistently high R? and low RMSE. Individual groups by
month range from an R2 of 62.1% and RMSE of 0.245 for Western New
York in January to 74.3% and 0.295 for the Coastal region in February.
When the groups are combined into a "Total” monthly group, the R2 and
RMSE values range only from 68.9% and 0.272 in January to 72.1% and 0.316
in February. Despite the variability of monthly station models and the
different density types of snow which fall, underlying SWE characteristics
are not overwhelmingly site-specific, at least among the locations
investigated. Differences are easily accounted for within the intercept term
for each station.

At this point a remaining question is which, if any, of the models is most
appropriate to use with data from a given Co-Op station. The small
difference in R? among groups may indicate all models perform equally
well. Independent verification on Co-Op snow survey data, discussed in

the next section, addresses this issue.



5. Model Verification on Independent Data

As mentioned in the introduction to this thesis, the National
Cooperative Observer (Co-Op) Program consists of over 11,000 stations,
primarily staffed by volunteers, under the supervision of state cooperative
program managers based in National Weather Service Forecast Offices.
These observers report daily values of maximum and minimum
temperatures, precipitation, snowfall, and snow depth.

The New York observers also participate in a periodic snow survey
under the auspices of the Northeast Regional Climate Center. Beginning
the first Monday in January, and at 28 day intervals through February,
followed by 14 day intervals into May, the observers determine the SWE in
addition to recording the regular variables. All observations at these
stations are taken at the same time of day, usually in the morning. Oldsnfl
and Oldppt are for the 24 hours immediately preceding the SWE and
Snowdepth measurement. Therefore, there is no time lag as is the case with
the NWSO observations, and errors due to this lost information are
eliminated for the present purpose. Figure 8 illustrates the timing of data
collection at Co-Op sites, including SWE determination during snow
surveys. It should be compared with the timing of data collection at NWSO

sites in Figure 3.

5.1 Data Preparation

Twenty-two stations (see Figure 9 and Table 32) with at least 20 years of
data were chosen for verification to ensure a length of record long enough

for statistical analysis. Two of the stations reported afternoon
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Previous Day Prediction Day
¢— Oldsnfl, Oldppt ?
Snowdepth
SWE
Max Min J
1 l |
I 1 i
8am. 8 p.m. 0 8a.m.
12a.m.

Figure 8. Timing of variable observations at Co-Op stations.

measurements of all variables, which only meant that the maximum
temperature used in calculating Maxinrow occurred just before the
observation rather than the previous afternoon. The remaining stations
favored 8:00 a.m., as in Figure 8. It was decided to use only January and
February Co-Op data to verify the models because the frequency of
observations in later months decreases sharply. Only those snow survey
dates with at least 2 inches (5 cm) of snow depth were used. For these
observations Maxinrow and sqrtSndp were determined.

The snow survey data for each Co-Op station was used to verify all of the
models developed for a particular NWSO. For example, January snow
survey data from a Co-Op station near Binghamton would have its sqrtSWE
predicted by the January Binghamton model, the Western New York and
"Total" January models using Binghamton's intercept, and the Western
New York and "Total" Winter models, also using Binghamton's intercept.
Initially, the set of models from geographically proximate NWSOs (e.g.;
Buffalo for Colden, Albany for Grafton) were used for predictions at the Co-
Op stations. Since the Co-Op stations were between NWSOs, verification
was attempted with the models for both nearby stations, or, in the case of

Old Forge, those for Syracuse, Albany, and Burlington. Generally, when the
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Table 32. New York National Cooperative Observer stations used in
verification studies with their years of snow survey data. The identification
numbers correspond to those in figure 8. "Jan. obs." and "Feb. obs" refer to
the number of snow survey observations at each Co-Op station in January
and February.

Station Years of Record [an. obs. Feb. obs.

1. Addison 1948 - 1986 15 11
2. Alfred 1938 - 1990 35 24
3. Bainbridge 1938 - 1990 24 12
4. Bath 1954 - 1990 10 10
5. Camden 1942 - 1986 27 23
6. Chasm Falls 1939 - 1980 30 30
7. Colden 1965 - 1990 21 19
8. Cooperstown 1941 - 1990 28 21
9. Cortland 1948 - 1990 28 22
10. Elmira 1947 - 1990 19 11
11. Grafton 1952 - 1984 30 23
12. Liberty 1942 - 1990 38 37
13. Little Falls 1937 - 1985 37 39
14. Mount Morris 1955 - 1986 15 13
15.Norwich 1938 - 1990 23 27
16.Old Forge 1937 - 1990 40 32
17.Slide Mountain 1941 - 1990 16 13
18. Stillwater Reservoir 1937 - 1990 43 35
19. Tupper Lake - Sunmount 1937 - 1990 43 42
20. Walton 1941 - 1980 28 22
21.Wanakena 1937 - 1990 51 48
22. Warsaw 1955 - 1990 11 9
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grouped models were tested, the intercept for the nearest NWSO was used.
The fraction of model-described variation (see Appendix E) of observed

values was calculated for each model. RMSEs were also determined, and

standardized residuals were plotted against snow depth and other predictors

for each location in an effort to detect biases or weaknesses in the models.

5.2 Verification Results and Discussion

With few exceptions at least one set of models described at least 60% of
the observed variability of sqrtSWE at each Co-Op station in New York for
both January and February. Usually all of the models within a NWSO
derived set performed equally well. In the cases where sets of models from
several NSWOs were tested against the same Co-Op station, those from one
NWSO usually outperformed the others. When standardized residuals
were plotted against snowdepth all stations in Western and Central New
York exhibited no problems, indicating very good response to the models.
RMSEs were very similar to those for developmental NWSO data sets
themselves (compare with statistics listed in Tables 8 and 9). This may be
partially due to the manner in which RMSE is calculated for a non-
developmental station (see Appendix E). For Adirondack stations,
however, sqrtSWE was uniformly underpredicted by Burlington and
Albany models. Investigation of January and February minimum
temperatures revealed more similarity between Adirondack stations and
Caribou than with Albany or Burlington. Applying the Caribou models
corrected most of this problem; the beginnings of a trend toward

underprediction was then only visible from residual plots when the actual
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SWE exceeded about 4 inches (10 cm) in January and about 6 inches (15 cm)
in February, both of which are near the upper range of observed values.

Table 33 shows the NWSO whose models best predicted the sqrtSWE at
each Co-Op station for both January and February. Figure 10 is a graphic for
January where arrows extend from each Co-Op station to the corresponding
NWSO listed in Table 33. Figure 11 is the same presentation for February.
For both figures numbers are length-of-record average monthly minimum
temperatures (°F). Figure 12 shows station elevation in feet above mean sea
level, with arrows from Co-Op stations to preferred NWSOs.

Tables 34 and 35 show more detailed results of verification tests for
January and February, respectively. Each Co-Op station is shown with
model-described variation and RMSE for each of the 5 models derived at the
NWSO listed in Table 33. Note that in some cases the winter "Total" model
had the best performance, while in others the regional models were better.
In a few instances the January or February single station model was better
than any of the grouped models. In many cases there tends to be little
difference between any of the models in a set. These results are included for
the benefit of a prospective user in determining whether one of the models

within a set is more suited for prediction at a particular location.
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The high percentage of described variation of sqrtSWE and low RMSE of
Co-Op stations using NWSO models when compared with those values
obtained from the developmental data is surprising until one examines the
timing of variable observation (refer to Figure 8). The lack of lost snowfall
and precipitation information affecting NWSO models may explain why
described variation at Co-Op stations tend to be better than at the
developmental sites. These results suggest that the models have wide
applicability in the region.

While most Co-Op stations tended to have sqrtSWE predicted by models
from the same NWSO in both months, several stations preferred different
sets of models for the two months. This concept of "best models" was
actually only a matter of an additional 1 or 2 percent model-described
variation. In the cases of Colden and Warsaw, Buffalo and Rochester
models were virtually equal in their ability to predict sqrtSWE in a given
month.

Proximity to a NWSO and similar minimum monthly temperatures are
not as important in Western and Central New York as is the presence or
absence of Lake Effect snow at a site. This phenomenon may be briefly
described as large amounts of low density snow caused by extremely cold air
traversing a warm body of water such as a Great Lake. The air entrains large
quantities of moisture before being forcibly lifted by frictional convergence
at the lakeshore, by the orographic influence of terrain rapidly increasing in
elevation, or a combination of the two mechanisms. This triggers
precipitation, resulting in large accumulations of snowfall.

Those stations in Western New York which receive Lake Effect snow

may have their sqrtSWE equally well predicted by Buffalo and Rochester
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models. In Central New York, Lake Effect stations are well predicted by
Syracuse models. The remaining Central New York stations are best
predicted by Binghamton models.

In the Adirondack and Catskill Mountains a two-step process must be
followed to determine if Caribou supplies the models of choice. First,
single-digit (°F) average monthly minimum temperatures are indicative of
a station where sqrtSWE is best predicted by Caribou models. Second,
double-digit (°F) minimum temperatures for stations with elevations
greater than 1200 feet also are best predicted by Caribou models. Of the
stations tested only Little Falls does not match these criteria, but is also
severely underpredicted by models from any station except Caribou.
Norwich did not meet the criteria for Caribou models, and sqrtSWE there is
best represented by Albany models.

For operational purposes, after checking temperature and elevation
criteria and snow origin, if a Co-Op station has a record of snow survey
observations, it should be used in making the final determination of which
NWSO-derived models are appropriate for the site in question. In the
absence of snow surveys the "Total" Winter model should be applied, while
implementing a periodic snow survey program to develop a dataset for
determining the optimal model. It should also be noted that caution must
be exercised when working with SWEs greater than 4 inches (10 cm) in
January, and 6 inches (15 cm) in February since the tendency for
underprediction begins at these values. Further work with SWE values in
this range is recommended.

It would be interesting to expand the Co-Op verifications to stations

outside of New York and determine if the models are truly regional. It
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seems quite probable that the number of stations supplying daily SWE data
can be reliably increased from 6 to over 250 in New York State, and with
further calibration, from 15 (see Figure 1) to over 500 (see Figure 2) in the
entire Northeastern United States, with further applications in adjacent
Canadian provinces.

Since these models only require knowledge of a few variables, it is
reasonable to suggest a further use. Output from meteorological forecast
models or subjective forecasts from operational meteorologists may be used
as input into SWE prediction models. Maximum temperature forecasts
could be used to estimate the future value of Maxinrow. Precipitation and
snowfall predictions could provide values of Oldsnfl and Oldppt, and could
be used to determine incremental increases in Snowdepth, or decreases if
fair weather was forecast. These prognostic values could be used to forecast
various SWE scenarios, taking the models described in this thesis beyond
the role of merely specifying SWE for the current day to the level of actually

predicting SWE amounts in the future.



6. Summary

Complete SWE and corresponding daily climatological summary records
at 15 NWSOs in the Northeastern United States were used to develop daily
SWE station prediction models for each of the winter months, as well as
November, March, and April. R2 values ranging between approximately
43% and 88% were achieved. The monthly station models were then
grouped regionally by month and then by season to produce more
generalized models. R2 values for the grouped models ranged between
approximately 62% and 72%. Even when the models are used for the
extreme case of 10-inch (25 cm) values of SWE, 67% of all predictions still
fall within about + 15% of the observed amount.

Validation tests using independent Co-Op station snow survey data
yielded similar or better percentages of model-described variation, regardless
of whether an individual station or grouped model was applied. A possible
upper limit of 4 inches of actual SWE in January and 6 inches in February
before underprediction begins was noted when using the models for areas of
deep snowcover.

Since no knowledge of previous SWE is required for this approach, it
appears that this work successfully fills a gap in the data network by
allowing daily cooperative observer data to be used in providing useful
estimates of SWE. The accessibility of this data on a real-time basis and ease
of calculation should allow this technique to be readily incorporated into

systems requiring knowledge of SWE and snowmelt.
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7. Appendix A - Stepwise Selection

Stepwise selection was employed to find the statistically best predictors
from the list of 19 potential predictors (see Table 6). In order to understand
the procedure some background statistics are required, after Neter, et al.
(1985).

The t-ratio, or t-statistic, is simply the ratio of a parameter estimate to its
standard error. When this ratio is greater than approximately 2.0, the
parameter estimate is significantly different from zero at roughly the 95%
confidence level, and implies the associated variable is a statistically
significant predictor. In the case of multiple regression, the corresponding
variable is a statistically significant component of a model, when considered
with the other predictors in the model. In other words, variable X is a
significant predictor when variables Y and Z are already in the model. The
square of the t-statistic is the F-statistic, and this is used in stepwise selection
to dictate the addition or removal of a variable from the model. Since the
order in which variables are selected by stepwise is not determined a priori,
the p-value corresponding to a given variable is an overstatement of
statistical significance. However, a t-ratio of 2, or F-ratio of 4, is still a
reasonable criterion for variable selection.

The mechanics of the procedure are presented as follows. In the first step
the dependent variable, which initially was SWE, was regressed against each
of the potential predictors. (In later stages, the transformed square root of
SWE was also subjected to this procedure.) The F-statistic for the predictor
in each of the 19 single predictor equations was calculated. Statistical
packages used for this procedure allow user selection of criteria for entering

and removing variables from the model. The criterion used was an F-value
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larger than 4 for a variable to enter the model, and an F-value less than 4 to
be removed. Although a technique involving matrix manipulation (Neter,
et al., 1985), known as the sweep algorithm, is more elegant and efficient, an
intuitive interpretation of the procedure follows.

The variable in the first step with the largest F-statistic greater than 4 was
added to the model. In the next step the initially selected variable was
regressed against SWE with each of the remaining potential predictors, in 18
separate 2-variable models. The F-statistic for each of the 18 variables being
checked was calculated. The additional variable which, when in a model
containing the first variable, had the largest F-statistic greater than 4, was
the second variable selected for addition to the model. At this point the F-
statistic of the first variable was tested to see if it had become less than 4,
causing removal.

The procedure continued in this manner. After a variable had been
added to the model, those already included were each checked to determine
if their F-statistic had fallen sufficiently for the variable to be removed. The
procedure stopped when no further additions or removals could be
performed. As the text explains, this was not the final model. Standardized
residual analysis, variable transformation, cross validation, and bootstrap
techniques, described in Appendix B and Model Development, had to be

performed before the model was finalized.



8. Appendix B - Standardized Residual Analysis

Before embarking on a description of standardized residual analysis a
brief review of some statistics is necessary. The following discussion draws
heavily on Neter, et al. (1985).

In multiple regression the difference between the observed and predicted

values is the residual or error:

(e) = observed - predicted (B1)
Therefore, a positive residual indicates underprediction, while a negative
residual is a result of overprediction. If one squares each residual, the result
is the squared residual or error:

(SE) = (observed - predicted)? (B2)
and then the sum of squared residuals or errors is:

(SSE) = Y(observed -predicted)? (B3)

Equation (B4) then shows the mean squared error.

(MSE) = 2(observed —predicted)2 (B4)
sample size — (# of predictors) — 1
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In this work the original model for Binghamton in January had 4 predictors

and was written:

y=bg + b1 (X]) +by(Xp) +b3(X3) + by(Xy) (B5)

If n = sample size, then the denominator in (B4) was n-5. The reduction of
the denominator may be considered as the penalty for estimating the
population parameters from a sample. Each estimated parameter causes the
loss of one degree of freedom.

Finally, the root mean squared error, also known as the standard

deviation, or standard error of the predicted values, is found by:

(RMSE) =

( Z(observed —predicted)” )1/2

sample size — (# of predictors) — 1 (B6)
The standardized residual is then obtained by:
Standardized residual = observed - predicted (B7)

RMSE
and indicates how many standard deviations a prediction is from being a
perfect fit.

If the standardized residuals calculated for a particular regression model
are plotted against one of the predictors and are normally distributed, with
constant variance throughout the range of data, about 95% of the
standardized residuals will fall between the values of -2 and +2. In other
words, within two standard deviations of a perfect fit. This is illustrated

schematically in Figure B1.
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However, a standardized residual plot of the 4-variable model,
incorporating snow depth, Maxinrow, and the previous 24 hour snowfall
and precipitation as predictors for SWE is depicted in Figure B2, using
January data for Caribou. The variance of the plot becomes larger with
increasing snow depth. This violates the assumption of constant variance
throughout the range of data, required to obtain a RMSE representative of
the entire data set. The RMSE for this figure would probably be accurate for
the midrange of predictor values; in other words, a 95% confidence interval
would contain about the appropriate number of data points in that area, but
would contain 100% of the points at the low end, and perhaps only 70% at
the high end. The perceived accuracy of the model would be poorer than
reality at the low end and too great at the high, because intervals calculated
with the nonrepresentative RMSE would be said to contain 95% of all
points everywhere in the data. A transformation of the dependent variable

was indicated.
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The technique after Box and Cox (Draper & Smith,1981), described in
detail in Appendix C, was used to determine the best power for the
transformation. Here the appropriate power was 0.5, giving the square root
of SWE as the dependent variable. The standardized residual plot for that 4-
variable model is shown in Figure B3, still using January data from Caribou.
Although the variance had been made more constant, the curvature
indicated a problem among the predictors. Note how underprediction is
occurring in the mid-range of the predictor values, while overprediction is
occurring at both extremes. The correction was determined by examining
the scatterplot of SWE against snow depth, seen earlier as Figure 4. The
curvature of this plot resembles the function y = sqrt(x). If a best fit straight
line were connected to the origin and extended through the data, it would
overpredict the extremes and underpredict the mid-range. Transforming
Snowdepth to its square root in the model should correct for this tendency.
The standardized residual plot for the new 4-variable model predicting for

sqrtSWE yielded Figure B4, using the same January data from Caribou.
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9. Appendix C - Method of Box and Cox

When standardized residual analysis reveals non-constant variance
among the residuals from a multiple regression model, a transformation of
the dependent variable is often in order. Power transformations are part of
a flexible family which includes all of the most commonly used
transformations. An objective method for determining the proper power of
transformation, assuming such a transformation to be appropriate, was
developed by Box and Cox as summarized in Draper and Smith (1981). If
the power is denoted A, and the errors are assumed to be normally
distributed, a maximum likelihood method may be employed.

A range of A is selected, and increments of A are used. In this case A
between -1 and 1 at 0.1 increments were selected. The dependent variables

were then transformed to sets of W, where

W = (Y- 1)/) for A =0 (C1)
InY forA=0

For the range of A examined, this yielded 21 sets of transformed data. For
each set the transformed dependent variable was regressed against the

predictors, and then the following equation was calculated for every A level:
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L(A)=-0.5n (SSE/n) + A-1) ZInY; (C2)

where

L(A) = likelihood function of the regression parameters for the given

value of A
n = sample size
SSE = X(observed - predicted)2

Y; = observed values of the dependent variable
This produced 21 values of L(A), which were then plotted against A. The
resulting curve was used in determining the best A for transformation, by
merely taking the power associated with the maximum L(A) value. Table C1
shows actual L(A) values for January data from Binghamton. Although 0.4
was the best power, some subjectivity in choosing the transformation power
is permissible. Therefore 0.5 was selected for ease of interpretation. The

final result from this procedure gave sqrtSWE as the dependent variable.
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Table C1. Method of Box and Cox. The maximum L(lambda)
value is associated with the lambda which is the appropriate power
for transformation of the dependent variable.

A L(lambda)
-04 47.9
-0.3 61.1
-0.2 72.7
-0.1 82.3

0 90.4
0.1 96.7
0.2 101.3
0.3 104.4
0.4 105.6
0.5 105.3
0.6 103.5
0.7 100.0
0.8 94.8
0.9 88.6

1 81.3



10. Appendix D - Slope and Intercept Models with Dummy Variables

The method of slope and intercept models with dummy, or binary variables
was used to group station models. The goal was to determine if one
parameter estimate per variable was appropriate for all of the stations
within a group, or whether the variable requires site-specific parameter
estimates. The reason for determining this should be clear. One parameter
estimate suitable for the developmental stations within a geographic
grouping means that all other locations within that group should also be
served by that single parameter estimate. The contribution of that variable
in a prediction model would then be a straightforward arithmetic
calculation.

While the matrix mechanics are described in Neter, et al. (1985), a brief
summary using the extreme case of grouping 15 stations and 3 winter
months is provided here. The SAS® Proc GLM system (SAS, 1985)
considers 3 classes of variables besides the 4 main effect (i.e.; sqrtSndp,
Maxinrow, Oldsnfl, and Oldppt) predictors. These classes are viewed as sets,
or levels, of binary or dummy variables. Statistical considerations require
one fewer binary variables than the number of levels in a class to avoid
linear dependency (see Neter, et al., p.329-330, 1985). Thus, for 14 of the 15
stations, if prediction is occurring for data from one particular station, its
binary variable has a value of 1, while the others are set to zero. For the
15th station all 14 binaries are set to zero. The other classes are the 3
months, requiring 2 binaries, and rain on snow versus no rain on snow,

which utilizes a single binary variable.
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A more intuitive interpretation of the procedure would be to assume
that the system is actually developing a model for one station in February
with no rain-on-snow. The intercept term would be by and would already
include information about the month and lack of rain-on-snow. The
intercept term for the second station would be bj, + b;, the third station, b, +
b,, and so on until the 15th station intercept was calculated from b, + b,,. Ifa
different month were involved, the dummy variable associated with that
month would allow a correction factor to be added to the intercept. For the
second station in December this would be represented as b, + b; + by, if the
coefficients for the 4 variables in the model used b,; through b,s. Yet
another dummy variable would allow an additional correction factor to be
added to the intercept if rain had fallen on snow. In a three month model
where the correction factor for December is b,g, and for January is b,,, the
intercept for a rain-on-snow event in December would be represented as b,
+b, +b,g + by, for the second station. For all of these cases the full prediction
model would also include b,s-b,;g multiplied by sqrtSndp, Maxinrow,
Oldsnfl, and Oldppt respectively.

Before these final models were developed, interactions were considered.
Since it is possible for each of the four main predictors to vary by city, terms
representing this were included. Interaction is also possible for predictors
varying by month, and was included as another set of terms. Finally, rain
on snow can affect sqrtSndp and Oldppt, so additional interactive terms
were included for these.

Table D1 lists the number of terms which would appear if the model
with all possible components were written in equation form, and briefly

describes that equation.
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Table D1. Summary of terms appearing in the 15-station winter grouped
model.

Intercept 1
Stations - 1 14
Variables 4
Months - 1 2
Rain on Snow 1
4 variables * 14 stations 56
4 variables * 2 months 8
2 variables * rain on snow 2
Total 88

the predicted value of sqrtSWE would equal

by +byX; +b,X; +... + bg,Xg,

Initially the total winter model began with the 87 terms summarized in
Table D1. T-ratios were calculated for each group of interactive terms in the
model, as well as main effect predictors, as the ratio of parameter estimates
to standard errors, in order to determine if the parameter estimates were
significantly different from zero. If the corresponding p-value was greater
than 0.05, the term was non-significant at the 95% confidence level. When
this was true of the last term entered in the model it could be safely
removed. The model with remaining terms was then rerun. This
sequential removal, known as backward elimination (Neter, et al., 1985),
was performed until the only remaining terms were the main variables, the
station intercepts, which were always among the most important variables,
and the binary variables for rain on snow and for month. Table D2 shows
the t-ratios for each term, R?, and RMSE at each step in the removal process.
It is important to note that many interactions were removed which had

significant t-ratios, such as Oldppt with rain-on-snow. In each case the



141

resulting change in R2 and RMSE was quite small. Although statistically
significant, the presence of these terms was operationally meaningless. The
small loss in statistical accuracy was more than balanced by the

development of a model which was extremely simple to operate.
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11. Appendix E - Developmental vs. Independent Data Sets

- Some Considerations

In least squares regression, the percentage of model-described variation in
the dependent variable is equal to RZ only for the data set for which the

regression model was developed:

R2 =1 -SSE/SSTO = 1 - X(observed - predicted)? (E1)
T(observed - mean of the observed)?

The predictions from a least squares regression model are also unbiased, a
condition critical to this discussion because it implies the sum of residuals
equals zero.

In an independent data set, such as that from a Co-Op station (see
Section 5), the same relationships do not hold when a NWSO model is
applied. There is no guarantee of unbiased predictions. In fact, for many
Co-Op stations the correlations (r) between observed and predicted sqrtSWE
values were quite high. However, standardized residual analysis, discussed
in more detail in Appendix B, revealed consistent underprediction at
Adirondack stations (see Figure E1 for an example), despite these high
correlations. If one assumed that the amount of model-described variation
in these cases was simply the square of r, the results were unrealistically
high. This was due to a concept not often mentioned in textbooks. Only for
the developmental set treated with its own model does equation (E1) refer

to the described variation. For an independent data set

1 - (SSE/SSTO) = fraction of model-described variation # R2 (E2)
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With this understanding it became evident that the high correlation
between observed and predicted values indicated that instead of falling on
essentially the same line when plotted against sqrtSndp, observed and
predicted values described nearly parallel lines. The standardized residual
plots, exemplified by Figure E1, showed that the sum of the residuals could
not possibly have equalled zero, revealing the bias present in the
predictions. The amount of described variation, calculated by equation (E2)
yielded the low fraction expected of consistently underpredicted values. As
the text mentions, Caribou-derived models did not underpredict for
Adirondack stations, and yielded high fractions of model-described
variation.

Another difference between developmental and verification data sets is
the method for calculating RMSE. For developmental data sets RMSE is

calculated as described in Appendix B :

(MSE) = Z(observed —predicted)2 (B4)
sample size — (# of predictors) - 1

The reduction in the denominator is the penalty for estimating population
parameters from a sample. When applied to an independent data set this
model is then assumed to be the equation describing the underlying
population. There is, then, no penalty for estimation and mean squared

error is simply
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Mean squared error (MSE) = Y(observed - predicted)? (E3)
sample size

This, along with the much smaller sample sizes for snow survey data, may
contribute to why the Co-Op derived RMSEs are often superior to those

from developmental sites.
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