The Infrastructure and Climate Network (ICNet)

What climate data, model output, and information do engineers want & need?

Principals: Jennifer Jacobs, UNH, Jo Daniel, UNH, Ellen Douglas, UMB, Lee Friess, ICNet, Jack Kartez, USM, Paul Kirshen, UMB, Katharine Hayhoe, TTU, Linda Silka, UMaine

Contact Us: Icnet@theICNet.org, Follow Us: theICNet.org; Tweet Us: #ICNetNE

What is the ICNet?

Networks 100+ academics, students, & practitioners who are dedicated to accelerating climate science and transportation engineering research and adaptation in the Northeastern United States.

Focuses on climate change and sea level rise impacts research and adaptation for sustainable bridges, roads, railways, ports, and transportation networks.

Supported by the National Science Foundation since 2012

TRB Special Report 290, 2008

Motivation & Implications

The U.S. spends nearly \$200,000,000 per day building and rebuilding roads and bridges

Driving delays are expected to waste 7.3 billion gallons of fuel per year over the next two decades, increasing travelers' costs by \$41,000,000,000, and add 73 million tons of carbon dioxide to the atmosphere.

Climate and weather an important consideration in major road and bridge planning, design, and operations & maintenance

Very little information exists to guide roadway and bridge practitioners in light of climate change

Extreme Events: Winter Storm "Jonas" January 21-24, 2016

Extreme Weather Events: Hurricane Irene August 24-30, 2011

Climate Impacts: Pavement Rutting

Climate Impacts: Freeze-Thaw and Roads *Frozen Soils Increase Road Strength and Stiffness*

Climate Change and Infrastructure

TRANSPORTATION RESEARCH BOARD SPECIAL REPORT 290	GAO	United States Government Accountability Office Report to Congressional Requesters	•	Table 12. Se	ea Level Rise Impacts on Surface Transportation					
	April 2013	CLIMATE CHANGE		Impact		Planning	Design	Operation/Maintenance		
		Future Federal Adaptation Efforts Could Better Support Local Infrastructure Decision Makers		Sea Level Rise						
				· Coastal erosion Coastal Erosion	Roadway washout Damage to roadway substructure Route closures Travel delays	 Identify segments of roadway vulnerable to erosion Address vulnerability in transportation plans 	 Strengthen, heighten, and construct new seawalls and dikes Use a combination of hard engineering (human-made structures) and soft engineering measures (implementing 	Repair damage as needed by emergency contract or permanent restoration project Increase monitoring of infrastructure and conditions in coastal areas vulnerable to erosion Repair/replace/restore affected infrastruc- ture as needed Increase erosion control		
Potential Impacts of							ecological principles and practices) to protect	 Prepare for weather-related delays and traffic disruptions 		
on U.S. Transportation							Relocate highly affected or vulnerable infrastructure	 Prepare to provide alternative route information 		
NATIONAL RESEARCH COUNCIL or the matricely accesses	GAD-13-242			 Coastal and inland tidal zone road flooding Flooding 	 Flooding of roadways Roadway damage Road closures Travel delays Disruption of transit services 	Identify segments of roadway vulnerable to storm surge and sea level rise Address vulnerability in transportation plans Support land use poli- cles that discourage development on shoreline Plan and design more redundancy into the system	 Increase base elevation of infrastructure Change to more resilient building materials Build larger or additional drainage canals near coastal routes Relocate sections of road Strengthen, heighten, and construct new seawalls and dikes Use a combination of hard engineering (human-made structures) and soft engineering measures (implementing ecolog- ical principles) to protect coastal infrastructure 	Repair damage as needed by emergency contract or permanent restoration project Increase monitoring of infrastructure condi- tions during bigh tick and storm events		
Line Change,	<image/> <image/> <image/> <section-header><section-header><image/><image/></section-header></section-header>	Caltrans Activities to Address Climate Change Reducing Greenehouse Can Emissions ad Adapting to Impacts						Ensure that drainage systems are adequate to accommodate flood conditions Ensure that bridge openings/culverts are clear for appropriate flood management During extreme precipitation events, continually monitor drainage systems Prepare for weather-related delays and traffic disruptions Prepare to provide alternative route information Implement emergency operations response procedures		
Practitioner's Guide and Research Report			Bridge scour Bridge Scour	Compromised Integrity of bridge structures Bridge failure resulting in closure Reduced bridge capacity	 Identify locations of bridges in areas vulnerable to sea level rise and bridge scour Address vulnerabili- ties in transportation plans 	 Protect bridge piers and abutments with riprap Retrofit/repiace/relocate existing bridges for new scour conditions 	Repair damage as needed by emergency contract or permanent restoration project Increase monitoring for bridge pier and abutment scour			

NH

University of

New Hampshire

Eastern Region Department of Transportation Concerns

ICNet Foundation Tools

Transportation Community Climate Indicators

Precipitation

- Annual Average
- Spring Average
- Summer Average
- Fall Average
- Winter Average
- Days per year over 2 in.
- Days per year over 3 in.
- Maximum daily
- Maximum weekly

Temperature

- Annual Average
- Spring Average (MIN & MAX)
- Summer Average (MIN & MAX)
- Fall Average (MIN & MAX)
- Winter Average (MIN & MAX)
- Maximum
- Minimum
- Days over 95°F

Olympian Drive, Champaign, IL: Buckling of pavement during extreme heat. Image: The Champaign-Urbana News Gazette

ICNet Climate Maps

Referenced to Global Mean Temp

ICNet Research Grade Tools

Climate Model Comparison Tool

Resources

Choosing Climate Models

- Statistically Downscaled Output: download the Excel file
- Regional Model Output: download
 the Excel file
- Observational
 DataSets: download Excel file
- Station Observation Data: visit the NOAA website

Climate Model Intercomparison Project

- About CMIP: visit the CMIP website
- Raw Output for CMIP3 and CMIP5: download the Excel file

theICNet.org

Climate Model Output Source & Selection

						-							
0	0												
9	🗉 🗊 🖡												
A	Home	2] 🖽 📭 🔚 🚟 🔏 🖹 🍢 🤡 🐼 * 🖄 * 🧏 * 🏰 * 🕼 🖺 🐫 100% 💌 🕖										
-	Edit	1	Home Layout Tab	oles Charts	SmartArt Formulas Data	Review					_		
Ĥ	🚬 🛃 Fill	Edit Font Alignment Number Format											
		P	📮 🐺 Fill 🔻 Calibri (Boo	dy) 🔻 11	• A• A• = = = abc•	👌 Wrap Text 🔻	General	▼	Normal Ba	ad			
Paste				TT C - C			103 - 0/ •	Conditional	Good	outral			
1	E10	Pa	ste V Clear + D I			Merge *	70 7	Formatting	6000	eutrai	Inse		
			H16 😫 🛞 🛇 🤇	• fx									
1	Bure		A	В	C		D	E		F	G		
2			CNAIDE (Coupled Medal Intercomparison Dreject version E)										
3 D0	OWNSCALIN	CIVILP5 (Coupled Wodel Intercomparison Project Version 5)											
- D/	TASET HOS										_		
5 6 W	EBSITE:	2											
7			All CMIP5 model output can be downloaded at (registration required) http://cmip-pcmdi.ilol.gov/cmip5/										
8 D/ 9	ATA FORMAT	3					4						
		4											
5 Appropriate applications: There is no perfect model, always use a selection of at least 4 different GCMs, the more GCMs includ								Is included, the better. Do not	ded, the better. Do not attempt to select a <i>best</i> model for the region of interest.				
		6			If using multiple climate model simultions for an a	nalysis, always av	erage across climate mod	els as the very last step in the	analysis.				
		7			Do not average across multiple emission scenario	s. In this case, aver	raging will NOT improve t	he quality of the output becau	use scenarios are entirely dif	fferent possibilities	of future de		
		8		There is no one most likely emissions scenario. A good practice is to include a low and high scenario in the analysis to encompass the highest range in uncertainty.									
		9											
10		10	Inappropriate applications:		Selecting one single model and/or one single futu	alysis.	· · · · · · · · · · · · · · · · · · ·						
A	AILABLE DC	11			Do not expect a downscaled climate simulation to	y observations. Climate p	te projections are intended to match observations over climate time scales of decades, not d						
		12	-										
		12	Types of models (column F):	Group 1:	MOST RELIABLE. Models in this group represent t	ne most recent ver	rsions of reliable, very we	ll-documented, long-establish	ed global climate models fro	om modeling group	s that have		
	III Norm	13											
	Group 2: NEW AND INTERESTING. The latest work in climate modeling circles is the development of "Earth System Models" that models can definitely be used for interest but should have a "caution" label attached as they are still year much in deve								mbine the traditional components of a global climate mode oment.				
		14					,						
	EXPERIMENTAL. Models in this group represent brand-new global climate models, some from new modeling groups who are relatively inexperienced									n the field. These m	nodels have		
	1.00	others come from new groups and clearly need some time to sort out some inconsistencies in the models. Again, they should be used with a "caution" label attached.											
		15											
		16	L										
		17	Model Name	Modeling Center	Modelling Group		Country	Reference	Model 1	Type (1, 2, or 3)	Data Forma		
			ACCESS1 0	CEIRO ROM	Commonwealth Scientific and Industrial Res	earch	Australia	Pietal 2012		2	netCDE		
		18	ACCESSI.0	CSIRO-BOIM	Organisation and Bureau of Meteorolog	Y	Australia	<u>Bi et al., 2013</u>	2	3	netCDF		
		10	ACCESS1.3	CSIRO-BOM	Commonwealth Scientific and Industrial Res	earch	Australia	<u>Bi et al., 2013</u>	1	3	netCDF		
	-	19	200 00141 4	200									
		20	BCC-CSM1.1	RCC	Beijing Climate Center, China Meteorological Adn	inistration	China	<u>Wu, 2012</u>		1	netCDF		
1		21	BCC-CSM1.1-m	BCC	Beijing Climate Center, China Meteorological Adn	inistration	China	<u>Wu, 2012</u>		1	netCDF		
UM/	ASS	21			College of Global Change and Earth System Scien	ce, Beijing				_			
BOS	TON		CMIP5	CMIP3 +	concerce of order change and cards system selen	and a second				-			

Application of Climate Model Output

The ICNet Research Guide

About the Guide

- **Background Information**
 - The Basics of Climate Change Introduction to Climate Models
- The Intersection of Climate Change and Infrastructure
- New to Research
- **Research Basics**
- Introduction to Pilot Studies
- Conduct a Pilot Study
- Plan and Begin a Study
- A Guide to Infrastructure and Climate Change Pilot Studies A Guide to Infrastructure and Climate Change Research

The ICNet Research Guide

About this guide

This guide contains introductory information and specific methods for understanding and conducting research at the interface of climate change and transportation infrastructure. It is designed to be accessible for professionals and academics in the transportation or climate science sectors. It could also serve as an introduction for graduate and undergraduate students to the issues in climate science and transportation engineering. The Infrastructure and Climate Network (ICNet) created this guide for its members and others interested in advancing research on climate and infrastructure. More about the ICNet.

Why is climate change and infrastructure research important?

Our infrastructure is built on the assumption that the climate will stay stable, water levels along shore roads will remain consistent, and bridges will be subjected to floods with known levels and frequencies. The 2014 Intergovernmental Panel on Climate Change, among other scientific organizations, has reported that the climate is warming, in large part due to human activity. Increasing temperatures, precipitation, and rising sea levels will affect our roads, bridges, and other transportation infrastructure, with implications for public safety and the economy. Accurate, relevant scientific information is needed to effectively plan and design resilient infrastructure for communities now and in the future.

Need research help?

Methods to Characterize Uncertainty Relative Importance by Source

Climate Models & Observations: Global Temperature

Transportation: Planning, Design, Operations & Maintenance

- Materials
- Design Guides
- Performance Models

Priority Upcoming Climate Data & Products Needs

- Flooding Standards & Climate Change
- Uncertainty Quantification
- Linking DOT Assets & Weather/ Climate

The White House Office of the Press Secretary

For Immediate Release

January 30, 2015

Executive Order – Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input

EXECUTIVE ORDER

ESTABLISHING A FEDERAL FLOOD RISK MANAGEMENT STANDARD AND A PROCESS FOR FURTHER SOLICITING AND CONSIDERING STAKEHOLDER INPUT

By the authority vested in me as President by the Constitution and the laws of the United States of America, and in order to improve the Nation's resilience to current and future flood risk, I hereby direct the following:

Section 1. Policy. It is the policy of the United States to improve the resilience of communities and Federal assets against the impacts of flooding. These impacts are anticipated to increase over time due to the effects of climate change and other threats. Losses caused by flooding affect the environment, our economic prosperity, and public health and safety, each of which affects our national security.

The Federal Government must take action, informed by the bestavailable and actionable science, to improve the Nation's preparedness and resilience against flooding. Executive Order 11988 of May 24, 1977 (Floodplain Management), requires executive departments and agencies (agencies) to avoid, to the extent possible, the long- and short-term adverse impacts associated with the occupancy and modification of floodplains and to avoid direct or indirect support of floodplain development wherever there is a practicable alternative. The Federal Government has developed processes for evaluating the impacts of Federal actions in or affecting floodplains to implement Executive Order 11988.

Please use ICNet resources, contact ICNet, join ICNet, & refer peers to ICNet

ICNet 4th Annual Workshop April 11 and 12, 2016 New Castle, NH

Contact Us: Icnet@theICNet.org, Follow Us: theICNet.org; Tweet Us: #ICNetNE

Thank you

For more information, please visit theicnet.org or contact Jennifer Jacobs: Jennifer.Jacobs@unh.edu

Acknowledgements

We would like to acknowledge the National Science Foundation support via the RCN-SEES: Engineering Research Collaboratory for Sustainable Infrastructure in a Changing Climate CBET 1231326, NSF SEES Fellowship for Anne Stoner, TTU and the REU supplement.

Special thanks to Ellen Mecray, NOAA for her service to ICNet

