U.S. EPA National Stormwater Calculator (SWC)

Jason Bernagros
U.S. Environmental Protection Agency
Office of Research and Development
Center for Environmental Solutions and Emergency Response
Water Infrastructure Division, Stormwater Management Branch

July 28, 2020
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. It has been subjected to review by the Office of Research & Development and approved for presentation. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
National Stormwater Calculator (SWC)

https://www.epa.gov/water-research/national-stormwater-calculator
What is the SWC?

- Stormwater Management (Green Infrastructure/Low Impact Development (LID)) Design and Planning Tool
 - Allow for screening-level analysis of various green infrastructure (GI) practices, including planning level costs (green roofs, rain gardens, cisterns, etc.) throughout the U.S.
 - Model post-construction urban stormwater runoff discharges
 - Effects of alternative GI controls
 - Effects of changes in weather/climate
 - Allow non-technical professionals to conduct screening level stormwater runoff for small to medium sized (less than 1 - 12 acres) urban sites
Storm Water Management Model (SWMM)

- SWMM produces stormwater runoff estimates in the background of the SWC
SWC Web Application

https://swcweb.epa.gov/stormwatercalculator/
SWC:
Site Parameters and Embedded Data-sets

- **Location:** Bing Maps
- **Soils:** NRCS SSURGO
- **Slope:** NRCS SSURGO
- **Hydraulic Conductivity:** NRCS SSURGO
- **Precipitation and Temperature:** National Climate Center (NCDC)-NOAA from EPA’s BASINS Model
- **Potential Evapotranspiration:** Calculation based on meteorological data
- **Climate Change Future Scenarios:** Precipitation & potential evapotranspiration
- **Land-Cover/Use:** Menu driven by user
- **LID Practices & Costs:** Menu driven by user
SWC Application:
Northeast Ohio Regional Sewer District (NEORSD)Green Infrastructure Grants Program Kamm’s Corners Public Parking Lot Lot Retrofit Project

- SWC used by grant applicants for quantifying stormwater runoff reductions of proposed projects

https://neorsd.maps.arcgis.com/apps/Shortlist/index.html?appid=efd0ff60d52f4860978c5bb4098cb3d9
SWC Analysis: Project Location
SWC Analysis:
Soil Type: Rainfall Runoff Potential
SWC Analysis:
Soil Drainage (infiltration rate)
SWC Analysis: Topography
SWC Analysis:
Historical Precipitation & Potential Evapotranspiration
SWC Analysis:
Existing Land Cover
SWC Analysis:
Extreme Weather Impacts: State of Ohio – 2019

NOAA State Climate Summaries: https://statesummaries.ncics.org/chapter/oh/
Extreme Weather Scenario Data: U.S. EPA’s Climate Resilience Evaluation & Awareness Tool (CREAT) 2.0

- Climate scenarios derived from a range of outcomes of the World Climate Research Programme’s CMIP3 multi-model dataset.

- Contains a database of climate change effects across the US localized to a grid of 0.5 degrees in latitude and longitude (about 30 by 30 miles).

https://creat.epa.gov/creat/
Extreme Weather Scenario Data Sources:
U.S. EPA’s Climate Resilience Evaluation & Awareness Tool (CREAT) 2.0

IPCC/WCRP CMIP3
Daily climate projections for 2020-2074 from 9 GCM models at a coarse (2-5°) scale.

BOR/LLNL
Downscaled projections of monthly averages to ½ degree grid cells.

EPA-CREAT
Select Warm/Wet, Median, & Hot/Dry outcomes for each cell.

SWC & SWMM-CAT
Mapping of monthly CREAT scenarios (including PET and extreme events) to 7,000 NWS stations.

IPCC – International Program for Climate Change; WCRP – World Climate Research Program;
CMIP3 – 3rd Coupled Model Intercomparison Project;
BOR – Bureau of Reclamation; LLNL – Lawrence Livermore National Laboratory
SWMM Climate Adjustment Tool (CAT): Climate Change Scenarios & Extreme Storm Events

- Provides an add-in tool to SWMM and the SWC to identify seasonal changes in precipitation and temperature, as well as changes in extreme design events, at a localized level.
- Uses EPA-CREAT’s localized seasonal adjustment factors derived from GCM runs that can be applied to historical meteorological records.
- Allows the user to apply their own climate adjustments if they so choose.

https://www.epa.gov/water-research/storm-water-management-model-swmm
SWC Analysis: Climate Change Scenarios & Extreme Storm Events

• CREAT 2.0 regional grid results encompass each of the SWC’s rain gage and weather station locations.
SWC Analysis: Baseline Results
LID Controls:
Fact Sheet
Kamm’s Corners Public Parking Lot Retrofit Project (NEORSD)

Opportunities & Benefits:
- Demonstration project at public parking lot
- Local Community Development Corporation programs parking lot for public events; farmers market, etc.

Challenges & Constraints:
- Delays caused by site control & project coordination
- Incorporating maintenance requirements into City standard maintenance protocols

SWC Analysis:

LID: Redevelopment Project
SWC Analysis: Runoff Reduction Results

Estimated runoff reduction of 17.43 inches/year ~ 690,457 gal./year
SWC Analysis:
Runoff Results: Extreme Storm Events
Discussion and Questions

Thank You!

National Stormwater Calculator Website:
https://www.epa.gov/water-research/national-stormwater-calculator

Contact: SWC@epa.gov

Jason Bernagros
U.S. Environmental Protection Agency
Office of Research and Development
Center for Environmental Solutions and Emergency Response
Water Infrastructure Division
Stormwater Management Branch
P: (202) 566-1671
E: bernagros.jason@epa.gov