Preposterous* Precipitation – A Practitioner’s Perspective

Charles Hebson
MaineDOT / ENV

Extreme Precipitation Workshop
Mass DFW, Westborough, MA
15 October 2019

* “beyond reason & convention” thesaurus category
Where are the Practitioners?

- Agriculture
- Stormwater *
- Hydrology / Hydraulics *
- Water Supply
- Sewer Districts
- Watershed Management
- Ecohydrology *
- **Transportation**

Apologies to Prof. Frink
Extremes - A Matter of Scale

• Space
 – 10^{-3} mi2 to 10^{3+} mi2

• Time
 – 5 min to 72+ hrs
 – Weeks to months to years!

• Time & Space often go hand in hand
 – larger watersheds imply longer time scales

• Identified Needs also dictate scales
 – Ag & Water Supply: seasonal, annual, multi-year
 – Hydraulic structures: event-based – minutes to hours
Not All Extremes are Big

- Droughts

- Flood
 Carrabassett, ME Rt 27
What Kinds of Data do We Use?

- Event-Based Design of Hydraulic Structures
 - Depth-duration-frequency
 - Intensity-duration-frequency

- Continuous Time Series
 - Analysis and design of systems
 - Water supply
 - Stormwater
 - Sewer
 - Extremes take care of themselves
Extreme Precipitation

- A HUGE Subject
- Bigger than a 6-hr workshop
- Time now to limit my comments
 - Hydrologic design in transportation
 - Hydraulic Structures
 - Civil / site design
 - Stormwater
 - Northeast US
 - Rural state

Percent increase from 1958 to 2012 in the amount of precipitation falling in very heavy events.

Very Heavy Precipitation is defined as the heaviest 1% of all daily events from 1958-2012.

Source: Kenneth Kunkel, Cooperative Institute for Climate and Satellites, North Carolina State University and NOAA NCDC.
Hydrologic Design in Transportation

- All about “Sizing the Structure”
 - Bridges, culverts, pipes
- Design for flow of specified frequency
 - E.g. Q50 - “50-year flow”, “50-year event”
- Calculate flow by regression equations
 - Precip may not even be needed!
- Calculate flow from precipitation by a rainfall - runoff (R/RO) model (urban & smaller watersheds)
 - Assume T-yr rainfall event produces T-yr flow
- Typically assume steady flow hydraulics **
 - Don’t need hyetograph or time series
R/RO Calculators Used in Design

- Rational Method *(intensities)*
 - \(Q = C_i A \)
- TR-20 (NRCS) *(24-hr depth)*
 - Hydrograph method
 - And derivatives
 (ex. HydroCAD, TR-55, parts of HEC-HMS))
- Almost never “calibrated” to real data
- Large, *Unknown* Uncertainties
 - In the precip inputs, the model & model parameters
NOAA Atlas 14

- Standard Source for precip inputs to event-based hydrologic models
 - Also precip.net for the Northeast
- DOT’s have a particular interest in Atlas 14
 - Principal funding partners with NOAA
 - Replaces workhorse 50-yr old TP-40
- Depth-Duration-Frequency (DDF) Curves
 - For TR-20 hydrology
- Intensity-Duration-Frequency (IDF) Curves
 - For Rational Method
PDS-based depth-duration-frequency (DDF) curves
Latitude: 38.0000°, Longitude: -95.0000°

Depth – Duration - Frequency
Intensity – Duration - Frequency
Now and Then – and Tomorrow?

• Atlas 14
 – Looking back
 – historic data (thru 2010 or so)
• Next update probably 20+ years away
• What about tomorrow?
• How to incorporate climate projections in design?
 Should we even try?
Climate Projections?

- Daily time step
 - Design needs (R/RO): sub-daily, even sub-hourly

- Grid Size 10 – 100 km (100 km² – 10,000 km²)
 - Design watersheds (R/RO) 1 ac – 640 ac (0.004 – 2.6 km²)

- Need to **DOWNSCALE**
 - Space
 - Time (disaggregate)

- Climate models not intended for these small space & time scales
What is Needed for Design?

- Projected IDF, DDF curves & tables
 - Use same R/RO design tools
- Focus of ongoing NCHRP research
- Small urban and flashy watersheds likely most at need
 - Strongest relationship bet Rainfall & Runoff
- Larger watersheds?
 - R/RO relationship much more complicated
Wait a Minute!
Step back – take a deep breath

- Don’t just automatically go to design with projections
- Time to look at uncertainty in current IDF / DDF
- Doesn’t come naturally
 – “Give me a number”
- Need a design protocol to look at projections and existing uncertainty

[Table showing average recurrence intervals for different durations]
• We have time to reflect, ponder & act responsibly
• We are *not* facing a crisis when it comes to sizing structures for changing precipitation