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Information About This Webinar
• The presenters’ statements and opinions are their own and do not necessarily represent the official 

statements or opinions of the Actuarial Board for Counseling and Discipline (ABCD), Actuarial 
Standards Board (ASB), any boards or committees of the American Academy of Actuaries, or any 
other actuarial organization, nor do they necessarily express the opinions of their employers.

• The Academy operates in compliance with the requirements of applicable law, including federal 
antitrust laws. The Academy’s antitrust policy is available online at 
https://www.actuary.org/content/academy-antitrust-policy.  

• Academy members and other individuals who serve as members or interested parties of any of its 
boards, councils, committees, etc., are required to annually acknowledge the Academy’s Conflict of 
Interest Policy, available online at https://www.actuary.org/content/conflict-interest-policy-1.   

• This program, including remarks made by attendees, may be recorded and made available to those 
registered for the webinars. Additionally, this program is not open to the news media. 

If you have questions, please enter them in the “Ask Question” window on your screen.  

https://www.actuary.org/content/academy-antitrust-policy
https://www.actuary.org/content/conflict-interest-policy-1
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Goals and Intentions

• Focus on:
**the state of the science
**model inputs
**resolution, 
**uncertainty 

• Perspectives of cat modelers (today) and climate modelers (on May 15th)  
• Specific Goals:

**Enable stakeholders to incorporate NOAA’s climate data into their decision-making  
**Encourage academic cat and climate modelers to submit proposals to NSF later this year
**Support the Academy’s on-going efforts to examine climate change and climate risk



Housekeeping Review

• Insert On24 information

Maximize Your Viewing and Engagement Experience

• The individual windows are resizable and moveable, so please feel free to move them 
around to get the most out of your desktop space.

• You may expand your slide area and the media player by clicking on the arrows in the 
top right corner of those windows. 

• If you have any questions for our speakers, you may submit them through the Q&A 
engagement tool. 

• You may find slides for today’s webinar in PDF format in the Related Content tool. For 
answers to some common technical issues, visit Help at the bottom of your screen.

• We invite you to share your feedback on today’s webinar on the “Take Survey” tool on 
your screen.
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Meteorologist & SVP Natural Catastrophe Solutions
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Catastrophe Risk Models 
Definition

• Computer programs that estimate the potential financial impact to one or more
insured risks from a given peril, such as tropical cyclones.
• Cat models are highly granular, bottom-up models that use large, pre-compiled

stochastic event sets to calculate financial losses to insurance contracts based
upon (1) event intensity at each insured risk, (2) the physical characteristics of
each insured risk, and (3) the terms of the insurance policy of each insured risk.
• Catastrophe risk models rely on the Law of Large Numbers to produce

statistically stable financial and statistical outputs, such as pure premium (the
amount of premium needed annually to “break even” with respect to a given peril
over an infinite time period) and loss exceedance probability distributions
(likelihood that financial losses will exceed x dollars in a given year).

8Source: Munich Re



Catastrophe Risk Models 
Simple Model Flowchart
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Catastrophe Risk Models
Creating a Stochastic Event Set for Atlantic Hurricane

§ All cat modelers use HURDAT2 / Best Track data as the first-order source in calibrating the frequency & severity of 
landfalling tropical cyclone (TC) events in the Atlantic. It is also used to extract TC parameters for statistical modeling. 

§ Event Tree: Modelling a range of hurricane parameters (different combinations of intensity, landfall angle, Rmax, etc.) at 
thousands of pre-defined points along the U.S. coastline, without regard to overall basin behavior, except for landfall 
rates.

§ Basin Simulation: Modelling entire Atlantic Basin to recreate realistic hurricane event sets using tens of thousands of 
model iterations (years). Can be done with either numerical weather prediction (NWP) or statistical models. Historical 
landfall frequency/severity relationships along coastal segments (“gates”) must be closely approximated by the model. 

§ TC Windfield: Several different equations or mathematical approximations can be used to simulate a hurricane wind 
field. Examples include NWP models, Gradient Wind Equation, Holland B Parameter, and Rankine Vortex. Max 3-sec 
gust typically used to related wind intensity to damage, duration of wind may also be considered.

§ TC Storm Surge: Due to complexity of modeling coastal flooding, NWP is typically used for storm surge footprints 
(SLOSH, MIKE, etc.), forced by the stochastic event’s wind field.

Florida Commission on Hurricane Loss Projection Methodology:
https://fchlpm.sbafla.com/model-submissions/hurricane-model-submissions/?year=2019



Incorporating Climate Change into Cat Risk Models

The insurance industry is most concerned about:
• The next 12 months: Typical length of 

insurance contract
• The next 5 years: Business strategy & planning  
• 20-30 years from now: Regulatory reporting to 

Gov’ts, etc.

What climate data are most useful to insurers? 

• Attribution science: Climate change is implicitly 
included in every new year of loss and hazard 
data. Can we distinguish the extant climate 
signal from natural variability and noise? 

• Changes in peril tail risk & shifts in the overall 
probability distributions at regional spatial 
scales (or better). 

• Measuring uncertainty around the above.
Source: Ollie Wing



Incorporating Climate Change into Cat Risk Models
Other Challenges

Unanswered science questions: 

• Impact of climate on global TC 
frequency.

• Understanding the drivers of the 
1970-94 Atlantic TC drought.

• Impact of anthropogenic warming 
on natural climate variability, esp. 
ENSO & its teleconnections. 

• How important are global 
correlations in cat modeling? Do 
we need global, all-peril 
meteorological cat models? 

Source: J. Climate, Lee et. Al (2020)



© 2023 Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München 
("Munich Re"). All rights reserved.
The content of this presentation (including, without limitation, text, pictures, graphics, as well as the arrangement 
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Charles Jackson, PhD
Director of Atmospheric Perils Modeling 
Verisk
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Shared research goals 
between the climate and 
catastrophe modeling 
communities
Charles Jackson, Director of 
Atmospheric Perils Modeling
4/17/2023
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Shared research goals between the climate and 
catastrophe modeling communities

Outline:

I. It’s not what you may be thinking

II. One good science question

III. Obstacles and opportunities
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I. It’s not what you may be thinking

• Catastrophe models represent possible losses that 
could happen next year.

• Losses are sensitive to peril characteristics including 
damaging area, intensity, and frequency.

Cat Model Claims Experience
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Catastrophe models are designed to estimate frequency of 
losses from observed and possible extreme events.

• Average Annual Loss (AAL) is the mean of 
a highly skewed probability distribution. 

• 9% of AAL comes from high frequency, low 
severity events (< 5-year return period).

• 27% of AAL comes from the tail (>100-year 
return period).

Exceedance Probability for Average Annual Loss 
of a hypothetical French company to ETC storms

With only ~30 years of loss data, we lack 
good information about the exceedance 
probabilities for events with return 
periods greater than 5-10 years.

https://www.air-worldwide.com/publications/air-currents/2012/European-Windstorm-
Models--Questions-You-Should-Ask/
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Losses are a highly non-linear function of peril characteristics.
Maximum wind for a cluster of 

storms in 2011/12

https://www.air-worldwide.com/publications/air-currents/2012/European-Windstorm-
Models--Questions-You-Should-Ask/



20©Verisk Analytics, Inc. All rights reserved.

3-Second Wind Gusts @ 10 m

[m/s]

Local Intensity Estimation: ETC Daria 
January 25, 1990, at 12 am

Typical cat model development:
• Perturb 50-year history of 

storms using numerical 
weather prediction and 
statistical modeling.

Next generation cat model 
(@Verisk):
• Uses Deep Learning tools and 

reanalysis products to debias 
and downscale climate model 
output. 
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Calibrate models against latest available 
observations. Strategy 1

Subsample catalog years to capture changes in 
frequency, intensity, and location.Strategy 2

Existing Catalog

Low severity       High severity

New catalog

Low severity       High severity

Climate Change 
Projections

Accounting for Climate Change
Adjust model 
intensities toward 
observations

Inventory Conditioned Catalog
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Shared research goals between the climate and 
catastrophe modeling communities

Outline:

I. It’s not what you may be thinking

II. One good science question

III. Obstacles and opportunities
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What explains changes in US tornado counts?

Gensini and Brooks (2018) Nouri et al. (2021)
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Why these observations seem problematic for 
catastrophe modeling:

• CMIP5 ensemble shows that environmental predictors for the number of days 
with severe thunderstorm environments (NDSEV) should increase the most in 
the spring. From 1980 to 2020, spring NDSEV was only expected to increase 
by 10% (Diffenbaugh et al., 2013).

• Observed changes in tornado counts is dramatic. For instance, in Kentucky EF 
1+ counts increase by 600% since 1980. 

• Are environmental predictors of severe thunderstorm perils robust predictors 
of potential loss characteristics (area, intensity, and frequency)?
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Shared research goals between the climate and 
catastrophe modeling communities

Outline:

I. It’s not what you may be thinking

II. One good science question

III. Obstacles and opportunities
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“Please address these questions”

What are the major obstacles to improvements in cat modeling?

• Lack of radar observations of peril characteristics (area, intensity, frequency) 
and storm report data, particularly outside the US.
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“Please address these questions”

What changes in climate models would improve cat modeling generally?

• Ability to resolve effects of mesoscale processes on peril characteristics.

• Develop high resolution fingerprints of the effects of anthropogenic forcing to 
interpret the predictable component of observed changes in station data.
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“Please address these questions”

What changes in climate models would improve cat modeling for specific 
perils?

• For severe thunderstorm perils (hail, straight-line wind, and tornados), develop 
new strategies for predicting peril characteristics from environmental data.
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Catastrophe Models 2

Eric Robinson, PhD
Director, Global SCS Lead 
Impact Forecasting
Aon



Using Climate Data in 
Catastrophe Models

04/17/2023
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Usage Falls into 2 Categories: Direct and Indirect

Indirect Applications

• Data are used as a background field from 
which statistical models of the hazard are 
created

• May utilize “observations”, numerical models, 
or a mix of both

• Example: Using CAPE and Shear from 
Reanalysis to guide placement of Severe 
Convective Storms

Direct Applications

• Data or model output is used directly 
as a way of generating the hazard 
component of the model

• Example:  Simulation of ETCs over 
Europe extracted from 1000-year 
simulation of current climate
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Difficulties with Indirect Applications

• Indirect can also mean “incomplete”

• Catastrophe models often require more detailed information than can be gleaned reliably from 
“proxies”
• Tornado length/width/intensity and how this relates to environmental conditions
• Radius of maximum winds for Tropical Cyclones
• Snow-to-Liquid Ratio, Snow vs. Freezing Rain

• Indirect can sometimes be in conflict

• Various environmental parameters can be in conflict
• CAPE vs. Shear vs. CIN
• Drought results in drier fuel, but also significantly less growth of fuels (but only in some pyromes)

• Indirect often depends on invariance

• Statistical models very often rely on stationarity, which is rarely true when it comes to environmental 
conditions over shorter periods of time

• “Past performance is not a guarantee of future returns…”



33

Difficulties with Direct Applications

• Direct applications can heavily rely on resolution

• Perils have varying needs when it comes to resolution, making direct applications very resource 
intensive
• ETCs vs. Supercells vs. Tornadoes vs. Hailstones
• Urban versus Rural locations

• Direct applications often require downscaling, which may or may not be sufficient for proper 
risk assessment

• Dynamic downscaling is exponentially expensive: We often need 10s-100s of thousands of years
• Statistical downscaling is faster, but may miss interactions that happen on small scales

• Example:  Downstream storms initiated by a convective outflow
• Not all variables are straight-forward to downscale

• Cloud Cover
• Parameterizations are unavoidable, and have varying degrees of “goodness”

• Land surface interactions and changes
• Microphysics
• Turbulence
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Applications of Future Climate Suffer from Additional Problems

• Greater uncertainty requires examining many models

• Differences in resolution, variable availability, output frequency, etc., can make comparison difficult
• Also dramatically increase processing time and complexity

• Different models are more credible for certain phenomena than others, but this isn’t always clear

• Model independence can be difficult to determine

• For example, some models share the same dynamical core which can cause them to form “families” 
of solutions which are not truly independent

• The mean can be meaningless…
• Focusing purely on changes in the mean is not always helpful, especially when:

• The “mean” falls outside of the envelope of deterministic outcomes (e.g., the mean of two equal 
but opposite trends is no trend at all)

• The response of the mean is not equal to the mean of the responses (e.g., the damage from the 
mean wind speed is not equal to the mean damage of the constituent wind speeds)
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Some Suggestion for Future/Continued Work

Proxy 
to 

Property

Conflict 
to 

Congruence

Persistent
or

Passing?

Develop
Deft

Downscaling

Time for
a

Tree?

Diagnose 
the

Distribution

What can large-scale 
environmental conditions tell us 
about small-scale details?

Are there more efficient ways to 
achieve downscaled results?  
ClimateGPT anyone?

What additional information do we 
need to resolve conflicting climate 
signals?

Time for a “model family tree”?  
How do we decide when models 
are different enough?

How do we identify relationships 
that are the result of the 
fundamental underlying physics?

Move past the mean!  How does 
the distribution of variables 
change? On different temporal and 
spatial scales?



Some Thoughts on Public-
Private Partnerships
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Public-Private Partnerships Require a Joint Understanding

Academic and industry priorities 
are not always aligned

Publish or Perish vs. Playing it 
Close to the Chest

Research takes time, but 
investment demands results

In the end… It’s a business… 
and businesses require ROI

Scoping

Timeline

Exclusivity

Ownership



Some Suggestions when Starting a New Public-Private Partnership
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Contract negotiations take time

A minimum of six months if you expect 
back and forth between legal 
departments, possibly longer if there 
are multiple institutions involved.  
Cover usage, dissemination, 
publication, publicity, ownership, costs, 
timelines.  Never underestimate the 
ability of legal negotiations to take 10x 
longer than you think is “necessary”

List out explicit 
deliverables and timelines

Ensures that everyone gets what they 
need, when the need it.  Explain the 
different use cases for the deliverables 
to ensure adequacy of project scope 
and proper use of research.  Be 
sensitive to academic timelines and 
department funding practices.

The best collaborations 
are partnerships

• Don’t limit your thinking to just the 
task at hand… if it goes well, can 
you create an enduring partnership?

• Projects get easier with time and 
familiarity, continuing partnership 
has a much better ROI

Approach difficult topics 
with creativity

Most private companies are going to 
want commercial use of the project 
outputs with limited restrictions and 
some level of exclusivity.  How can this 
be arranged but still allow for 
dissemination of the research for peer-
review and advancement of the field?



Disclaimer

Legal Disclaimer

Aon’s Reinsurance Solutions business, part of Aon UK Limited (for itself and on behalf of each subsidiary company of Aon plc) (“Aon”) reserves all rights to the content of this report (“Report”). This Report is for distribution to Aon and the organisation to which it was 
originally delivered only. Copies may be made by that organisation for its own internal purposes but this Report may not be distributed in whole or in part to any third party without both (i) the prior written consent of Aon. and (ii) the third party having first signed a 
“recipient of report” letter in a form acceptable to Aon. Aon cannot accept any liability to any third party to whom this Report is disclosed, whether disclosed in compliance with the preceding sentence of otherwise.   

To the extent this Report expresses any recommendation or assessment on any aspect of risk, the recipient acknowledges that any such recommendation or assessment is an expression of Aon opinion only, and is not a statement of fact. Any decision to rely on any 
such recommendation or assessment of risk is entirely the responsibility of the recipient. Aon will not in any event be responsible for any losses that may be incurred by any party as a result of any reliance placed on any such opinion. The recipient acknowledges that 
this Report does not replace the need for the recipient to undertake its own assessment. 

The recipient acknowledges that in preparing this Report Aon may have based analysis on data provided by the recipient and/or from third party sources. This data may have been subjected to mathematical and/or empirical analysis and modelling. Aon has not verified, 
and accepts no responsibility for, the accuracy or completeness of any such data. In addition, the recipient acknowledges that any form of mathematical and/or empirical analysis and modelling (including that used in the preparation of this Report) may produce results 
which differ from actual events or losses. 

The Aon analysis has been undertaken from the perspective of a reinsurance broker.  Consequently this Report does not constitute an opinion of reserving levels or accounting treatment.  This Report does not constitute any form of legal, accounting, taxation, 
regulatory or actuarial advice. 

Limitations of Catastrophe Models

This report includes information that is output from catastrophe models of Impact Forecasting, LLC (IF).  The information from the models is provided by Aon Benfield Services, Inc. (Aon) under the terms of its license agreements with IF. The results in this report from IF 
are the products of the exposures modelled, the financial assumptions made concerning deductibles and limits, and the risk models that project the pounds of damage that may be caused by defined catastrophe perils.  Aon  recommends that the results from these 
models in this report not be relied upon in isolation when making decisions that may affect the underwriting appetite, rate adequacy or solvency of the company. The IF models are based on scientific data, mathematical and empirical models, and the experience of 
engineering, geological and meteorological experts. Calibration of the models using actual loss experience is based on very sparse data, and material inaccuracies in these models are possible.  The loss probabilities generated by the models are not predictive of future 
hurricanes, other windstorms, or earthquakes or other natural catastrophes, but provide estimates of the magnitude of losses that may occur in the event of such natural catastrophes.  Aon makes no warranty about the accuracy of the IF models and has made no 
attempt to independently verify them.  Aon will not be liable for any special, indirect or consequential damages, including, without limitation, losses or damages arising from or related to any use of or decisions based upon data developed using the models of IF.

Additional Limitations of Impact Forecasting, LLC

The results listed in this report are based on engineering / scientific analysis and data, information provided by the client, and mathematical and empirical models.  The accuracy of the results depends on the uncertainty associated with each of these areas. In particular, 
as with any model, actual losses may differ from the results of simulations. It is only possible to provide plausible results based on complete and accurate information provided by the client and other reputable data sources.  Furthermore, this information may only be 
used for the business application specified by Impact Forecasting, LLC and for no other purpose.  It may not be used to support development of or calibration of a product or service offering that competes with Impact Forecasting, LLC.  The information in this report 
may not be used as a part of or as a source for any insurance rate filing documentation.

THIS INFORMATION IS PROVIDED “AS IS” AND IMPACT FORECASTING, LLC HAS NOT MADE AND DOES NOT MAKE ANY WARRANTY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THIS REPORT; AND ALL WARRANTIES 
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED BY IMPACT FORECASTING, LLC.  IMPACT FORECASTING, LLC WILL NOT BE LIABLE TO ANYONE WITH RESPECT TO ANY 
DAMAGES, LOSS OR CLAIM WHATSOEVER, NO MATTER HOW OCCASIONED, IN CONNECTION WITH THE PREPARATION OR USE OF THIS REPORT.
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Climate Change Modeling and Cat Models
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Catastrophe Modeling FRAMEWORK

Simulate 
wildfire scenarios 

for 50,000 
versions of next 

year

Quantify spatial 
extent & intensity 
of heat, ember, 
smoke hazards 
using physical 

science models

Estimate damage 
for different 
vulnerability 

classes based on 
material, height, 
occupancy, year 
built & mitigation 

measures

Apply insurance 
terms & 

conditions to 
estimate loss to 
policy holder, 

insurer, reinsurer

Apply
Exposure

Apply 
replacement 

value of 
properties at risk 

for structure, 
contents, and 

business 
interruption
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WILDFIRE HAZARD MODELING FRAMEWORK

Topography
Surface Fuels
Canopy Fuels
Forest Fuels

Dist. to 
Vegetation

50,000-year 
Extreme Weather 
Simulations

50,000-year
Extreme Wind 
Simulations

Climate Change 
“So-Far”

Simulate
Ignitions 
considering 
urbanization 
patterns

Explicit 
Ember 
Transport 
Modeling

Minimum 
Travel Time 
Algorithm  
=
Realistic fire 
durations

Structure to 
Structure 
Spread
=
Next 
Coffey Park

Smoke 
Footprints:

Emission and 
Transport models

Up to 20% of loss
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FIRE WEATHER SIMULATIONS

Principal Component Analysis (PCA) to capture spatiotemporal patterns
35 Years North American Land Data 
Assimilation System (NLDAS-2)
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Full Range of RCPs and Time Horizons

§ Representative Concentration Pathways (RCPs) are 
different IPCC pathways which describe future 
greenhouse gas (GHG) emissions and atmospheric 
concentrations, air pollutant emissions and land use

§ RCPs are pathways not snapshots – the rate of 
climate change varies:

• By time along each RCP

• Between RCPs

§ RMS climate change models include:

• RCP2.6, RCP4.5, RCP6.0, RCP8.5

• From 2020-2100 in 5 year intervals

• Total of 68 RCP/Time Horizon conditioned views

Global Mean Surface Temperature (GMST) Relative to 
Pre-Industrial Levels

Very high GHG 
emissions 
pathway

Stringent 
mitigation 
scenario pathway

Source: CMIP5, data processed by 
RMS

IPCC: Intergovernmental Panel on Climate Change   |   CMIP: Coupled Model Intercomparison Project
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What Peril parameters are affected by Climate Change?

§ Changes in Temperature and evaporation

• Increased evapotranspiration of wet and dry fuel load

• Earlier snowpack melt

§ Changes in humidity and rainfall

• Atmosphere holds more water vapor – 21% more verses 1951-1980 baseline

§ Changes in wind 

• Warming may affect circulation patterns, wind seasonality, wind speeds/direction

• GCM not well calibrated and validated on this aspect. 

• Relationship not clear

§ Changes in length of fire season

§ Other factors such as fuel type, ignition, exposure, vulnerability, fire spread (wind), PSPS, urban 
conflagration changed as a function of ERC changes (but not explicitly)
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What’s the right ERC-G metric? 

Our objective is to pick ERC derived risk metrics that correlate with burned area & $ loss:

• Nday90: yearly number of days with ERC-G > 90 percentile of reference data, used often in the 
literature (Goss et al., 2020 and Abatzoglou et al 2020 )

• Max1m: yearly maximum 1-month ERCG

The chosen metrics for conditioning should, when changed, alter risk profiles for re/insurance 
applications
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Region definition

§ Aggregated ERCG index from the stochastic 
model and climate model data to 14 regions 
(considering both physical and $ factors) 

§ ‘Dimension reduction’ useful for two reasons:

§ Avoid computational issues related to ‘curse 
of dimensionality’  
(http://citeseerx.ist.psu.edu/viewdoc/download;js
essionid=7EB55EC5C863B4EBD16F4AAC0797
09A9?doi=10.1.1.64.5084&rep=rep1&type=pdf) 

§ Climate model signals are highly uncertain, 
and therefore high-resolution targets are not 
justified. Our approach is to use aggregated 
targets, and use the core cat model to 
understand relative risks at granular resolutions 
(since a great deal is invested in the core cat 
model)

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7EB55EC5C863B4EBD16F4AAC079709A9?doi=10.1.1.64.5084&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7EB55EC5C863B4EBD16F4AAC079709A9?doi=10.1.1.64.5084&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7EB55EC5C863B4EBD16F4AAC079709A9?doi=10.1.1.64.5084&rep=rep1&type=pdf
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Goss et al.  2020

RMS

RMS analysis of global 
climate model data (18 GCM) 
RMS analysis is consistent 
with the published literature

Working with 
Dr. John Abatzoglou

Fire weather: Temperature, 
humidity, and precipitation

Consistent With Existing 
Literature

Blue: RCP4.5
Red: RCP8.5
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U.S. Wildfire: Fire Weather Index Conditioning

Conditioned Variables

Max change > 15%         Max change > 150%         Source: data from MACAV2-METDATA, 
processed by RMS

Energy Release Component – fuel class G (ERC-G)
(fire weather index capturing fuel moisture, temperature, precipitation, and humidity)

Yearly maximum 1-month ERC-G Yearly number of days > 90th percentile of reference ERC-G
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Model conditioning concept 

• Take the distribution of ERCG (e.g. 
Nday90) in the existing model (red)

• Construct a target distribution using 
insights from the MACA data (blue)

• Adjust frequencies of years which make up 
the existing model distribution (X’s) to shift 
model distribution to match the blue target 
curve

• Multidimensional problem: perform 
conditioning across the 14 regions and 2 
ERCG metrics

Ø Single conditioned weight for each 
model year

• Repeat for each RCP and Time Horizon

xx x xx xx x xxx
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Schematic: ERCG nDay90 
distribution for NoCA

ERCG nDay
90
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Model conditioning concept for a given RCP and time-slice

§ For each region algorithm shifts the distribution 
from the reference model to the climate change 
model (in a user-friendly way)

§ Optimization algorithm enables weighting 
regions

§ Target has no change in volatility

§ Target has same correlation structure 

USWF reference 

Climate change
‘target’  
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U.S. Wildfire Climate Change Risk

Percentage Change in Average Annual Loss: 2050 vs. Present Day

RCP2.6 RCP8.5
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Challenges with working with GCMs

1. Currency of data – align with baseline today

2. Biases

3. Resolution

4. Volatility / Uncertainty



Thank you.Thank you.Thank youThank you
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Dialogue

Please enter your questions in the Q & A engagement tool on your screen
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Recording Available

This webinar has been recorded and is accessible on the website on the QR Code below
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Thank You
For more information, please contact:

Steve Jackson, PhD, Director of Research (Public Policy), American Academy of Actuaries 
Jackson@actuary.org

Ellen Mecray, Regional Climate Services Director, National Oceanic and Atmospheric Administration
ellen.l.mecray@noaa.gov

Barbara Ransom, NSF Directorate of Geosciences GEO Innovation Hub Lead, National Science Foundation
bransom@nsf.gov

To register for additional webinars in this series, please visit the Academy’s 
Calendar of Events

Upcoming webinar in this Series
May 15, 2023 – Noon – 1:30 PM EST

mailto:Jackson@actuary.org
mailto:ellen.l.mecray@noaa.gov
mailto:bransom@nsf.gov
http://www.actuary.org/

