Mechanisms of Extreme Precipitation Change Over the Northeast

Jonathan Winter^{1,2}, Huanping Huang^{2,1}, Erich Osterberg²

¹Department of Geography, Dartmouth College, ²Department of Earth Sciences, Dartmouth College

Northeast Extreme Precipitation Events Increased Dramatically 1960-Present

Northeast Extreme Precipitation Increased Dramatically 19601996-Present

Huang et al., 2017; Frei et al., 2015

Northeast Extreme Precipitation Increase is Widespread

Huang et al., 2017

Blame Tropical Cyclones (and Fronts and Extratropical Cyclones)

GHCN-D, LI2013, NARR over the Northeast

- Global Historical Climatology Network Daily: GHCN-D; Menne et al. 2012; 1901-2014
- Gridded observations of Livneh et al.: LI2013; Livneh et al. 2013; 1915-2011
- North American Regional Reanalysis: NARR; Mesinger et al. 2006; 1979-2014

Trends Sensitive to Start Year, Changepoint Analysis Better Characterizes Time Series

- Trends generally increasing with later start year: 2.4 mm decade⁻¹ (1901-2014) to 14.7 mm decade⁻¹ (1979-2014)
- Change in extreme best characterized as a shift in 1996: 53%

Extreme Precipitation: Averages Higher on Coasts, Trends Consistent over Domain

- Annual extreme precipitation (mm decade⁻¹) increased in 58 (50%), 30 (25%) of which were statistically significant
- Five (4.3%) stations had negative trends, two of which were significant

Huang et al., 2017

Extreme Precipitation: Difference between 1996-2014 and 1901-1995

- Annual extreme precipitation (%) was higher in 105 stations (91%) after 1996, with 56 stations exceeding a 50% increase
- Decreases east of Lake Erie (western NY and PA) and northeast WV

Huang et al., 2017

Extreme Precipitation Trends Most Difficult for Gridded Observations and Reanalysis

- LI2013 reproduces GHCN-D extreme precipitation, but underestimates GHCN-D extreme precipitation trends
- NARR underestimates GHCN-D extreme precipitation, and NARR extreme precipitation trends are sensitive to end year

Why Has Extreme Precipitation Increased?

- Global Historical Climatology Network Daily: GHCN-D; Menne et al. 2012; 1979-2016
- US Daily Weather Maps: NOAA 2017; 1979-2016
- ERA Interim Reanalysis: ERA-I; Dee et al. 2011, 1979-2016

Focus on Early Fall (Sep-Oct), Early Summer (Jun-Jul), and Late Winter (Feb-Mar)

Month	Pre-1996 EP mean (mm yr ^{—1})	Post-1996 EP mean (mm yr ^{—1})	Absolute EP change (mm yr ^{—1})	Relative EP change (%)
1	1.7	2.2	0.5	29
2	1.7	2.2	0.5	29
3	3.2	4.9	1.7	53
4	3.6	4.6	1	28
5	4.6	5.7	1.1 [#]	24
6	7.8	10.9	3.1	40
7	9.8	14.3	4.5*	46
8	14.7	12.6	$-2.1^{#}$	-14
9	9.9	20.3	10.4*	105
10	6.8	12.3	5.5	81
11	6.1	6.4	0.3	5
12	3.2	4.1	0.9	28
Total	73.1	100.5	27.4*	37

Categorize 273 5+ Station Extreme Precipitation Events (by Huanping)

Sep-Oct Tropical Cyclones Dominate Northeast Extreme Precipitation Increase

Analyze Atmospheric Drivers of the Extreme Precipitation Increase

- Composite potential driving fields on extreme precipitation days for pre-1996 (1979-1995) and post-1996 (1996-2016)
 - Total column water vapor
 - Geopotential height at 500 hPa
 - Sea level pressure
 - Zonal and meridional winds at 850 hPa and 250 hPa
 - Vertical velocity
 - Sea surface temperature (SST)

Huang et al., 2018

Tropical Cyclone Extreme Precipitation Correlated with Sea Surface Temperatures

Why Less Extreme Precipitation During Last AMO+ Phase (1928-1962)?

Increased Total Column Water Vapor in Hurricane Main Development Region

Conclusions

- Recent increases in Northeast extreme precipitation are best characterized as an abrupt shift of 53% after 1996
- Extreme precipitation increases are distributed uniformly throughout the Northeast except western NY/PA and WV
- There are differences between GHCN-D and NARR, LI2013 extreme precipitation trends
- Eighty-eight percent of the abrupt 1996 extreme precipitation increase is explained by 5+ station events in early fall, early summer, and late winter
- The 1996 extreme precipitation increase is caused by tropical cyclones (48%), fronts (25%), and extratropical cyclones (15%)
- Increased extreme precipitation is associated with warmer Atlantic sea surface temperatures and more water vapor