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Need to Update IDF Curve Development

Observed change in heavy precipitation

= Challenges in quantifying extreme events ‘ from 1958 to 2012
. M
— The most extreme precipitation events (or , —
heaviest 1% of all daily events) have increased I 12°
in every region of the contiguous states since r
the 1950s ¥
— Climate change projections suggest increased . m ‘:
likelihood of extreme precipitation events ; ‘
— Uncertainty in quantifying extreme events ' “‘1\ : )
= Regional resilience assessment requires “‘g{
improved understanding Of' Source: National Climate Assessment Report, 2014
— Non-uniform spatlal and temporal distribution Historical (blue) and Forecasted (red) Cumulative

of potential climate-induced changes in Distribution Function for 3-h Precipitation
intensity and variability of extreme events =t i

— Adaptation responses to these changes

— Uncertainty, source of uncertainty, and K S
associated risks A TN

= (Cities/regions need this information to inform
design of precipitation-affected infrastructure
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Casco Bay Region
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= Casco Bay watershed

— City of Portland located AT~
downstream of the t-,-.(;“% MG ranoy gh,.f_;;{,f,kg
treal # - A
watershed :

St:lean ‘ '.
— Recent flooding in 2007 R
impacted by both
stream flow and costal

storm

= Data sources: Montpelinye
o ST W,
— Precipitation records ; B

from 85 daily rain gages
and 15 hourly gages
from NOAA

— Precipitation projections
(shown as grid)
extracted from regional
climate modeling results
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|
Processes for IDF Development

Station Attributes:
Lat/Lon, Elevation, Mean Precp, Orientation
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Model Selection and Uncertainty

= Distribution model
— Five distributions considered "
— Ranked by goodness-of-fit measure using L- g
skewness and L-kurtosis 3
= Model uncertainty 4
— Wide range of preferred distribution models for
each of 10 durations in Casco Bay region
— Best model could not be confidently identified 00 01 02 03 04 05 06

= Bayesian model averaging (BMA) method | -skewness

— Combine a number of plausible models together
1_day duration 2_day duration 3_day duration

through weighting a
— Derive the weights from models’ posterior .
performances y

— provides deterministic forecast with the associated ; [ sowoss
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N |
Identification of Parameter Uncertainties

GEV

= Bayesian approach

25

— Sample the entire parameter
posterior distribution

20

[¢ B
— Determine distribution &
parameters (location, scale, and E v
shape) using MAP vs. L-moment Té - SN
estimates S - B
— Provide uncertainty band (95% - = a ©  Emprolquh
5%) based on parameter — T T T T T T T
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posterior distribution Return Period USC00172238 duration of 2
davs
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= Predictive uncertainty

100 years Return Period

— Incorporate both
parameter and model
uncertainties
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— Reduced predictive
uncertainty under
BMA

— Uncertainty
implication — risk
probability
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Incorporating Future Projections in IDF

1. DATA 2. TRANSFORMATION FACTORS
= QObserved
=== Control
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~ (van Pelt 2012)
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3. TRANSFORMED DATA

@ Apply changes in the means:

90 . _ B
fOT' Pobs < obs * Pt:rans = aPobs

Apply changes in the extremes:
fOT Pobs > qggs :

Efut B
Prrans = e, (Pobs - qggs) + a(qggs)
Econtrol

Transformed observation
data including future signal

Apply quantile factors:
Ptrans = Pops + 9'Z +f(Ai - E)

g — mean adjustment
f — scale adjustment

Remove difference between
controlled and observed quantile



e
Results of IDF Analysis Incorporating Future Projections

= Increased intensity for e SBnIDF 100 year
all durations and return in
return period events e

= More increase in high
return-period events

= Spatial variations in
change of IDF

[124.23044777 - 45.05342128
[145.05342129 - 56.76634388
[156.76634389 - 91.90511169
[ 91.8051117 - 1426611096
I 142.6611097 - 356.0965881
Observed DELTA QQ method
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Precipitation
— 400
5 Year

200

200

100

25 Year 25 Year 25 Year

Grid 300 Grid 300 Grid 300

Eugene Yan, Webinar--NOAA Eastern Region Climate Services, July 28, 2016



Future Work Contact: Eugene Yan
eyan@anl.gov

= |dentify and incorporate uncertainties from regional climate models

= Develop Runoff IDF for Casco Bay region

= Explore feasibility to include radar data in development of sub-daily IDF
and improve the quality of sub-daily IDF due to vary limited number of

hourly rain gage stations.
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