Real time Estimates Wildfire Smoke Mortality in the U.S.

Art DeGaetano

Director NOAA Northeast Regional Climate Center

Cornell University

Alistair Hayden Department of Public & Ecosystem Health Cornell University Ben Eck

Department of Earth and Atmospheric Science Cornell University Experimental: This page is experimental to provide a period of time for feedback to us.

Mortality Estimation Tool

https://wxmortality.rcc-acis.org

Research Article 🔂 Open Access 🛛 💿 🚯

Estimated Mortality and Morbidity Attributable to Smoke Plumes in the United States: Not Just a Western US Problem

Katelyn O'Dell 🔀, Kelsey Bilsback, Bonne Ford, Sheena E. Martenies, Sheryl Magzamen, Emily V. Fischer, Jeffrey R. Pierce

First published: 21 August 2021 | https://doi.org/10.1029/2021GH000457 | Citations: 31

https://www.ospo.noaa.gov/products/land/hms.html#maps

https://www.airnow.gov/?city=Ithaca&state=NY&country=USA

Seasonal Baseline PM2.5

- 1/1/2014 8/31/2023
- 24-hour-average PM_{2.5}
- 4 Seasons (DJF, MAM, JJA, SON)
- Non-smoke Days
- 99th percentile

The 99th percentile was selected to reduce likelihood of overestimating wildfire smoke.

For each sensor and each day

WFS-PM_{2.5} = Observed 24-hour average $PM_{2.5}$ – Baseline non-smoke $PM_{2.5}$

WFS-PM_{2.5} = 0 if sensor not under a smoke plume

Concentrations were interpolated between monitors, and the county-average value was extracted.

2024 Days with Wildfire-Smoke PM2.5 Concentration $\geq 1\mu g/m^3$

2023 Days with Wildfire-Smoke PM2.5 Concentration $\geq 1\mu g/m^3$

2019 Days with Wildfire-Smoke PM2.5 Concentration $\geq 1 \mu g/m^3$

Mortality Impact: 1/1/2019 - 12/31/2023

Highest WFS concentration day and location: Jefferson County, Oregon on 9/12/2020 (540µg/m³)

Yearly deaths across USA:

2018	662
2019	43
2020	1256
2021	967
2022	286
2023	2180
2024	228

Caveats

- Data are provisional estimates
- Uncertainty is fairly high
 - Across ten estimates using five smoke-estimation methods and two health-impact functions, lowest value of 4 deaths and a highest value of 30 deaths statewide during a wildfire smoke wave.
- Average over 24 hours and counties
 - Miss the impacts of smoke events that are smaller in space or time. For example, a daytime prescribed burn
- Uncertainty is an acceptable level for emergency managers to take action

Concluding Thought

Extendable to other risks such as high heat

$$M_{c,d} = P_c R_c (1 - e^{-\beta [Heat \, Index_{c,d}]})$$

Questions?

Art DeGaetano

Director, Northeast Regional Climate Center Cornell University

atd2@cornell.edu

